New evolution-busting drug overcomes resistance in aggressive breast cancers

October 05, 2019

A new type of drug that blocks one of cancer's key evolutionary escape routes from chemotherapy could be used to treat aggressive breast cancers, a new study has shown.

Scientists at The Institute of Cancer Research, London, found that the drug could reinvigorate the response to chemotherapy in cancers that had become resistant, in both cells grown in the lab and in mice.

The drug, known as BOS172722, works by forcing cancer cells through cell division too quickly - leading to fatal errors in parcelling out DNA.

The first clinical trial of the new treatment is now under way in solid tumours including aggressive triple-negative breast cancers - and the researchers believe it might also be effective against other fast-growing cancers including ovarian cancer.

The new study is published in the journal Molecular Cancer Therapeutics and was funded by The Institute of Cancer Research (ICR) - a charity and research institute - as well as by Cancer Research UK, Breast Cancer Now and Sixth Element Capital LLP.

BOS172722 is an example of one of the new evolution-busting therapies that will be the focus of the ICR's planned £75 million Centre for Cancer Drug Discovery.

The drug was discovered at the ICR in the Cancer Research UK Cancer Therapeutics Unit. It blocks a molecule called MPS1, which plays a central role in controlling cell division.

MPS1 is involved in organisation of chromosomes during cell division, ensuring they are distributed correctly between daughter cells and making sure that cell division doesn't go ahead until they have been parcelled out evenly.

By blocking MPS1 using the new drugs, cancer cells speed through cell division with the wrong number of chromosomes and die as a consequence.

The ICR researchers found that cancer cells in dishes treated with the MPS1 inhibitor went through cell division in just 11 minutes, compared with 52 minutes without the drug.

And fast-dividing cells, from triple-negative breast cancers, ovarian and lung cancers, were especially sensitive to the effects of blocking MPS1.

Currently, people with triple-negative breast cancer receive taxane chemotherapies, such as paclitaxel, as their standard care. Paclitaxel also affects the distribution of chromosomes during cell division but blocks the cell from dividing, which causes the cell to die. However, some cells escape becoming resistant to the drug and giving rise to more tumours.

Treatment with paclitaxel in combination with BOS172722 dramatically reduced time in cell division - from 110 minutes with paclitaxel alone to 15 minutes when combined with BOS172722. All cells treated with the combination divided with gross chromosomal abnormalities and died as a result, whereas 40 per cent remained alive with paclitaxel alone.

The MPS1 inhibitor was also effective at lower doses when used in combination with paclitaxel in mice, and was well tolerated by mice at the doses that almost completely eliminated the tumours.

Professor Spiros Linardopoulos, Professor of Cancer Biology and Therapeutics at The Institute of Cancer Research, London, who led the study, said:

"We have discovered a brand new type of cancer treatment that uses cancer's rapid growth against it, by forcing cells through cell division so quickly that they accumulate fatal errors. The drug works especially well in combination with chemotherapy in triple negative breast cancer cells - the deadliest form of breast cancer for which there are few successful treatments.

"Crucially, the combination is anticipated to be effective in cancer patients that have already become resistant to chemotherapy alone and has the potential to become a much-needed extra treatment option that could extend the lives of patients.

"The phase I trial of this combination is currently well under way and I look forward to the results."

Professor Rajesh Chopra, Director of Cancer Therapeutics in the new Centre for Cancer Drug Discovery, said:

"Cancer's ability to evolve and become drug resistant is the cause of the vast majority of deaths from the disease. We plan to counter that ability with the world's first 'Darwinian' drug discovery programme within our Centre for Cancer Drug Discovery, dedicated to creating a new generation of anti-evolution treatments.

"Our new MPS1 inhibitor is a great example of a drug that seeks to outsmart cancer by blocking off a key evolutionary escape route, and in doing so we believe it can breathe new life into a chemotherapy that had ceased to be effective."

Baroness Delyth Morgan, Chief Executive at Breast Cancer Now, which helped to fund the study, said:

"It's really promising that combining this newly-discovered drug with a standard chemotherapy could, in future, provide a new way to treat triple negative breast cancer and may even prevent the disease from becoming resistant to treatment.

"With triple negative breast cancer still lacking in targeted treatments, we urgently need to find new options to stop more women dying. This exciting study shows how well these drugs complement each other at a molecular level to destroy cancer cells.

"We now look forward to the results of clinical trials to understand whether this approach may be as effective and safe in humans. In the meantime, anyone with questions about their breast cancer treatment can call our free Helpline on 0808 800 6000 to speak to one of our expert nurses."
-end-
For more information please contact Claire Hastings in the ICR press office on 020 7153 5380 or claire.hastings@icr.ac.uk. For enquiries out of hours, please call 07595 963 613.

Notes to editors

Triple negative breast cancers are so-called because they have different biology to other types of breast cancer, lacking key treatment targets present in those fed by the hormones oestrogen (ER+) or progesterone (PR+), or that are driven by human epidermal growth factor receptor 2 (HER2+).

Around 15 per cent of all breast cancers - over 8,000 cases a year in the UK - are triple negative.

The Institute of Cancer Research, London, is one of the world's most influential cancer research organisations.

Scientists and clinicians at The Institute of Cancer Research (ICR) are working every day to make a real impact on cancer patients' lives. Through its unique partnership with The Royal Marsden NHS Foundation Trust and 'bench-to-bedside' approach, the ICR is able to create and deliver results in a way that other institutions cannot. Together the two organisations are rated in the top centres for cancer research and treatment globally.

The ICR has an outstanding record of achievement dating back more than 100 years. It provided the first convincing evidence that DNA damage is the basic cause of cancer, laying the foundation for the now universally accepted idea that cancer is a genetic disease. Today it is a world leader at identifying cancer-related genes and discovering new targeted drugs for personalised cancer treatment.

A college of the University of London, the ICR is the UK's top-ranked academic institution for research quality, and provides postgraduate higher education of international distinction. It has charitable status and relies on support from partner organisations, charities and the general public.

The ICR's mission is to make the discoveries that defeat cancer. For more information visit http://www.icr.ac.uk

Institute of Cancer Research

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.