Carbon storage from the lab

October 05, 2020

Peatlands with their huge diversity of peat moss species store about 30 percent of the earth's soil carbon. This means they store roughly twice as much carbon as all the world's forests combined. However, peat harvesting and climate change are threatening these long-term carbon stores because there is not enough founder material for cultivating peat mosses on a large scale. In collaboration with researchers from the University of Greifswald, a team of scientists led by plant biotechnologist Professor Ralf Reski from the Faculty of Biology of the University of Freiburg in Germany has established the world's largest laboratory collection of mosses of the genus Sphagnum. With this as a foundation, peat mosses can be grown in a sustainable and economic way. The scientists have published their research in the scientific journal New Phytologist. Melanie Heck, a PhD student, is the first author.

For their project - called MOOSzucht - the scientists collected sporophytes, the spore capsules of mosses, of 19 Sphagnum species in Austria, Germany, Latvia, Russia, Sweden, and the Netherlands. The world's largest collection of Sphagnum cultures is now housed in the International Moss Stock Center (IMSC), a resource center founded in 2010 at the University of Freiburg. Scientists use the spores to create pure peat moss cultures in a laboratory environment that are not contaminated by bacteria, fungi, algae, or suchlike. Some species grow at a rate 50 to 100 times faster in the laboratory than in a moor landscape. The researchers measured the growth of the mosses in liquid mediums containing nutrients, also known as suspension cultures. They also determined how many sets of chromosomes could be found in the cell nuclei in the cultures and compared this to the genome size of the already established model moss Physcomitrella patens. In this way they were able to identify haploid and diploid Sphagnum species - in other words, species with single or double sets of chromosomes, respectively. However, they could not find a correlation between the number of sets of chromosomes and moss growth, meaning it is still unclear why diploid mosses exist in nature.

Peat is harvested on a large scale for growing vegetables and ornamental plants in greenhouses and home gardens. Due to climate change and the resulting droughts and higher temperatures, peat mosses are showing poorer growth, deteriorating more quickly, and binding less carbon. The researchers from the University of Freiburg want to replace this dire need for peat with renewable biomass. However, the large amount of founder material that would be needed for this can only be produced in bioreactors. That is why Reski and his team at the IMSC are distributing lab strains of peat mosses to various research institutes and companies who are active in basic research, biotechnology, or in sustainable bioeconomy.
The MOOSzucht project, of which Reski's plant biotechnology lab is a member, is a program funded by the German Federal Ministry for Food and Agriculture (BMEL) and runs from 2017 to May 2021. The project also includes two groups from the University of Greifswald, the Karlsruhe Institute of Technology (KIT), and the company Niedersächsische Rasenkulturen NIRA. In addition to his involvement in this project, Reski is a founding member of the excellence clusters CIBSS - Center for Integrative Biological Signalling Studies as well as livMatS - Living, Adaptive and Energy-autonomous Materials Systems, both of which are at the University of Freiburg.

Original publication:
Heck M, Lüth VM, van Gessel N, Krebs M, Kohl M, Prager A, Joosten H, Decker E L, Reski R (2020): Axenic in-vitro cultivation of 19 peat-moss (Sphagnum L.) species as a resource for basic biology, biotechnology and paludiculture. New Phytologist. DOI: 10.1111/nph.16922

MOOSzucht Project

International Moss Stock Center (IMSC)

Article in Online Magazine

Plant Biotechnology
Faculty of Biology
University of Freiburg

University of Freiburg

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to