Study identifies characteristics of infused CAR T cells associated with efficacy and toxicity in in patients with large B-cell lymphoma

October 05, 2020

HOUSTON -- Researchers at The University of Texas MD Anderson Cancer Center have identified molecular and cellular characteristics of anti-CD19 CAR T cell infusion products associated with how patients with large B-cell lymphoma (LBCL) respond to treatment and develop side effects.

The research team also found that early changes in circulating tumor DNA one week after CAR T cell therapy may be predictive of treatment response in a particular patient. The paper was published online today in Nature Medicine.

"CAR T cell therapy is highly effective against LBCL," said corresponding author Michael Green, Ph.D., associate professor of Lymphoma and Myeloma. "However, we experience two main clinical challenges: achieving long-term remission and managing treatment-associated adverse events."

This study suggests that, within the first week of therapy, clinicians may be able to identify a subset of patients who may experience more poor outcomes or adverse treatment reactions, said Green. This would allow the care team to adjust therapy to improve efficacy or to act to mitigate toxicity.

CAR T cell signature, early molecular response may predict long-term outcomes

For this study, researchers performed single-cell analysis on CAR T cells to study gene expression profiles in the infused cells. CAR T cells were collected from those remaining in infusion bags following treatment of 24 patients with LBCL. These genetic profiles were compared to treatment responses, determined at three months post-infusion by PET/CT scan.

"When we look at the characteristics of the infused CAR T cells, we found that samples from patients who were less responsive to treatment had exhausted T cells, whereas those who experienced complete responses had T cells expressing 'memory' signatures," said co-corresponding author Sattva Neelapu, M.D., professor of Lymphoma and Myeloma. "Additionally, one cellular signature of T cell exhaustion was more commonly found in patients who exhibited a poor molecular response, and poor molecular response is generally associated with less-positive, long-term outcomes."

Further, the researchers analyzed early molecular responses in the patients by monitoring changes in circulating tumor DNA from treatment to one week post-infusion. The magnitude of change in tumor-associated DNA corresponded with response, suggesting that patients who displayed an early molecular response were more likely to experience a clinical response to treatment.

CAR T cell features predict likelihood of severe side effects

Adverse side effects of CAR T cell therapy can include cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome (ICANS). These adverse events can delay patients' recovery and can lead to increased need for hospitalization and intensive care.

"When we examined the infusion product, we found that a cell population with characteristics similar to myeloid cells, with a monocyte-like transcriptional signature, was associated with development of high-grade neurotoxicity," said Green. "Detecting these cells may subsequently lead us to identify patients who would be at higher risk of developing neurotoxicity, allowing us to provide prophylactic treatment with agents that target the specific cellular features."

Further examination may lead to insights into the types and attributes of the cells present within the CAR T infusion product.

"This study also tells us that some rare and unexpected cells identified by single-cell analysis could be biologically important," said co-corresponding author Linghua Wang, M.D., assistant professor of Genomic Medicine. "Going forward, we plan to functionally characterize these monocyte-like cells to better understand their specific biological mechanisms driving these clinical results."

These findings will help researchers develop clinical interventions that can block or target these cells. They also plan to validate the capacity of circulating tumor DNA to accurately predict patients' long-term outcomes.
This research was supported in part by the B-cell Lymphoma Moon Shot®, part of MD Anderson's Moon Shots Program®. With support from the Moon Shot and the Cancer Prevention & Research Institute of Texas (CPRIT), the research team plans to utilize PDX models of disease that relapsed following anti-CD19 CAR T cell therapy to preclinically test interventions that could lead to better treatment responses or to prevention of adverse side effects.

Other research support came from the Schweitzer Family Fund, the National Cancer Institute (P30 CA016672) and start-up research funds from MD Anderson. A full list of co-authors and their disclosures can be found here.

University of Texas M. D. Anderson Cancer Center

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to