Invasional meltdown in multi-species plant communities

October 05, 2020

Invasive alien plant species can pose a serious threat to native biodiversity and to human well-being. Identifying the factors that contribute towards invasion success is therefore crucial. Previous studies on biological invasions have focused mainly on interactions between one alien and one native species, attributing invasion success to the superior competitive ability of the invading aliens. Very few experiments have examined them in multi-species plant communities.

A new experiment by ecologists based at the University of Konstanz (Germany), the Northeast Institute of Geography and Agroecology at the Chinese Academy of Sciences, Taizhou University (both in China), the French National Research Institute for Sustainable Development and the Joint Research Unit for Plant-Microorganism-Environment Interactions (France) addresses this research gap by considering competition among plants in communities comprised of several plant species, both alien and native. The results, which appear in the latest issue of Nature Ecology and Evolution, pinpoint one major reason for invasion success and subsequent invasional meltdown to soil microbes, especially fungal endophytes.

Soil microbes a major driver of invasion success

"Plants compete in different ways", explains Zhijie Zhang, first author on the study and a doctoral researcher in the University of Konstanz?s Ecology group led by Professor Mark van Kleunen. "The most intuitive way is competition for resources such as nutrients and sunlight. But competition can also occur through other trophic levels, for instance in relation to herbivores and especially in regard to soil microbes (fungi, bacteria and other small organisms that live below ground). Our study shows that fungal endophytes, which spend at least part of their life cycle inside plants, are key to explaining invasion success".

Previous studies have revealed that plants modify the community of soil microbes as they grow, which affects both their own development and that of plants which later grow on this soil ("soil-legacy effect"). However, exactly how soil-legacy effects impact competitive outcomes between alien and native plants in multi-species communities had remained unclear. To address this issue, the researchers conceived a large multi-species experiment consisting of two stages. First, soil was conditioned with one of six native plant species, with one of four aliens, or, as a control, without any plant. In a second step, on these soils, ten plant species (either native or alien) were grown without competition, with competition from conspecific plants, or with competition from another species, thus mimicking different competition scenarios in nature. To assess the role of microbes, the researchers further analysed how soil-conditioning species affected the soil microbial communities and how the soil microbial communities affected later plants, taking biomass production above ground as an indication of competitive ability.

Invasional meltdown in multi-species plant communities

The study revealed several things: First, there was no evidence of superior competitive ability among the naturalised aliens if the soil they were grown on had not undergone any conditioning. In other words, aliens did not prove to be more competitive than natives in two-species communities, a finding that challenges previous theories on invasion success. Soil conditioned by aliens, however, did affect competitive outcomes between natives and aliens, with aliens producing much more biomass than native plants. "In this scenario, the aliens proved much more competitive than their native rivals, lending further credence to the invasional meltdown hypothesis", explains Zhang.

This hypothesis posits that the establishment of one alien species in a non-native habitat can facilitate the invasion of other alien species in the same environment. The study by Zhang et al. pinpoints the underlying mechanism to the soil microbiome: "Our analyses reveal that the legacy effect of soil-conditioning species on later species became less negative as their microbial communities became less similar", elaborates Zhang. Aliens were observed to share fewer fungal endophytes with other aliens than with native species, which comes with a lower chance of fungal endophytes spilling over. "The idea, which is also referred to as 'novelty', is that two species that share few fungal endophytes affect each other less negatively than two species that share many endophytes", concludes Zhang. "More research needs to be carried out, but we are positive that soil microbes are crucial to invasion success and invasional meltdown in multi-species communities".
-end-
Facts:

- New study with participation from University of Konstanz ecologists reveals invasional meltdown in multi-species plant communities and identifies soil microbes, especially fungal endophytes, as main drivers of invasion success.

- Large multi-species soil-conditioning experiment involving a range of native and alien plants suggests that soil conditioned by alien plant species pushes the competitive edge towards invading aliens that later grow on that soil.

- The results further suggest that this is because alien species share fewer soil microbes, especially fungal endophytes, with one another than they do with native species, which means that alien invaders are less negatively affected by each other than they affect their native rivals.

- Original publication: Zhijie Zhang, Yanjie Liu, Caroline Brunel, Mark van Kleunen, Soil-microbes-mediated invasional meltdown in plants, Nature Ecology and Evolution, 5 October 2020. DOI: https://doi.org/10.1038/s41559-020-01311-0. Please note that the URL will not go live until after the embargo has lifted at 16:00 BST/17:00 CEST on Monday 5 October 2020.

Note to editors:

You can download a photo here: https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2020/Bilder/invasional-meltdown.jpg

Caption: Plant pots with plants used during the experiment.

Image credit: Zhijie Zhang

Contact:

University of Konstanz
Communications and Marketing
Phone: +49 7531 88-3603
Email: kum@uni-konstanz.de

University of Konstanz

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.