New shortcut enables faster creation of spin pattern in magnet

October 05, 2020

Physicists have discovered a much faster approach to create a pattern of spins in a magnet. This 'shortcut' opens a new chapter in topology research. Interestingly, this discovery also offers an additional method to achieve more efficient magnetic data storage. The research will be published on 5 October in Nature Materials.

Physicists previously demonstrated that laser light can create a pattern of magnetic spins. Now they have discovered a new route that enables this to be done much more quickly, in less than 300 picoseconds (a picosecond is one millionth of a millionth of a second). This is much faster than was previously thought possible.

Useful for data storage: skyrmions

Magnets consist of many small magnets, which are called spins. Normally, all the spins point in the same direction, which determines the north and south poles of the magnet. But the directions of the spins together sometimes form vortex-like configurations known as skyrmions.

"These skyrmions in magnets could be used as a new type of data storage", explains Johan Mentink, physicist at Radboud University. For a number of years, Radboud scientists have been looking for optimal ways to control magnetism with laser light and ultimately use it for more efficient data storage. In this technique, very short pulses of light are fired at a magnetic material. This reverses the magnetic spins in the material, which changes a bit from a 0 to a 1.

"Once the magnetic spins take the vortex-like shape of a skyrmion, this configuration is hard to erase", says Mentink. "Moreover, these skyrmions are only a few nanometers (one billionth of a meter) in size, so you can store a lot of data on a very small piece of material."


The phase transition between these two states in a magnet - all the spins pointing in one direction to a skyrmion - is comparable to a road over a high mountain. The researchers have discovered that you can take a 'shortcut' through the mountain by heating the material very quickly with a laser pulse. Thereby, the threshold for the phase transition becomes lower for a very short time.

A remarkable aspect of this new approach is that the material is first brought into a very chaotic state, in which the topology - which can be seen as the number of skyrmions in the material - fluctuates strongly. The researchers discovered this approach by combining X-rays generated by the European free electron laser in Hamburg with extremely advanced electron microscopy and spin dynamics simulations. "This research therefore involved an enormous team effort", Mentink emphasises.

New possibilities

This fundamental discovery has opened a new chapter in topology research. Mentink expects that many more scientists will now start to look for similar ways to 'take a shortcut through the mountain' in other materials.

This discovery also enables new approaches to create faster and more efficient data storage. There is an increasing need for this, for example due to the gigantic, energy-guzzling data centres that are required for massive data storage in the cloud. Magnetic skyrmions can provide a solution to this problem. Because they are very small and can be created very quickly with light, a lot of information can potentially be stored very quickly and efficiently on a small area.
The study was a collaboration between MIT (Boston), Max-Born-Institut (Berlin), Johannes Gutenberg Universität (Mainz), European XFEL (Hamburg), Technische Universität Berlin, Universität Göttingen, Deutsches Elektronen-Synchrotron, Universität Heidelberg, Politecnico di Milano and Radboud University.

Radboud Centre for Green Information Technology

The Radboud Centre for Green Information Technology strives to drastically decrease the energy demand of the coming decades using innovations in IT. In the centre, researchers from 15 different research departments of the Radboud University work together to combine their expertise in IT, neurosciences, materials, chemistry, physics, ecology, and environment. Together with business and social partners, they work on new, sustainable uses of IT and solutions for energy-efficient data usage. In this way, the centre takes concrete steps to a sustainable future. ?

Radboud University Nijmegen

Related Data Storage Articles from Brightsurf:

Reviewing multiferroics for future, low-energy data storage
Big data and exponential demands for computations are driving an unsustainable rise in global ICT energy use.

A new ultrafast control scheme of ferromagnet for energy-efficient data storage
Using a single laser pulse that did not switch the ferrimagnetic layer, researchers demonstrated a much faster and less energy consuming switching of the ferromagnet.

Multi-state data storage leaving binary behind
Electronic data is being produced at a breath-taking rate. Around ten zettabytes (ten trillion gigabytes) of data is stored in global server farms, and that's doubling every two years.

Robust high-performance data storage through magnetic anisotropy
A technologically relevant material for HAMR data memories are thin films of iron-platinum nanograins.

Energy-saving servers: Data storage 2.0
A research team of Mainz University has developed a technique that will potentially halve the energy required to write data to servers and make it easier to construct complex server architectures.

New approach to DNA data storage makes system more dynamic, scalable
Researchers have developed a fundamentally new approach to DNA data storage systems, giving users the ability to read or modify data files without destroying them and making the systems easier to scale up for practical use.

Scientists take steps to create a 'racetrack memory,' potentially enhancing data storage
A team of scientists has taken steps to create a new form of digital data storage, a ''Racetrack Memory,'' which opens the possibility to both bolster computer power and lead to the creation of smaller, faster, and more energy efficient computer memory technologies.

Discovery offers new avenue for next-generation data storage
The demands for data storage and processing have grown exponentially as the world becomes increasingly connected, emphasizing the need for new materials capable of more efficient data storage and data processing.

Magnetic whirls in future data storage devices
Magnetic (anti)skyrmions are microscopically small whirls that are found in special classes of magnetic materials.

Laser writing enables practical flat optics and data storage in glass
Femtosecond laser machining has emerged as an attractive technology enabling appications ranging from eye surgery to direct writing in the bulk of transparent materials.

Read More: Data Storage News and Data Storage Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to