Looking sharp: Most detailed image yet of famous stellar nursery

October 05, 2020

Astronomers using the international Gemini Observatory, a Program of NSF's NOIRLab, have captured the western wall of the Carina Nebula in unprecedented detail in a compelling image released today. The image reveals a number of unusual structures in the nebula. The exquisite detail revealed in the image is in part due to a technology known as adaptive optics, which resulted in a ten-fold improvement in the sharpness of the research team's observations.

There is no better location to investigate the birth of stars than nebulae -- regions of gas and dust where stars coalesce, heat up and start to glow. The brilliant Carina Nebula, located in the southern hemisphere sky, is 500 times larger in actual area than the better-known Orion Nebula, making it an ideal candidate for investigating star formation.

The team used adaptive optics on the 8.1-meter Gemini South telescope in Chile to significantly improve upon previous observations of the Carina Nebula's western wall, the well-defined edge of the nebula. Adaptive optics compensates for the effects of turbulence in the Earth's atmosphere to produce pin-sharp images, comparable to those from a space telescope. Indeed, this image is reminiscent of the famous Hubble Pillars of Creation in the Eagle Nebula.

Star-forming regions are shrouded in dust but it is possible to see through the shroud of dust by observing in infrared light. The team, led by Patrick Hartigan of Rice University, utilized the Gemini South Adaptive Optics Imager (GSAOI), a near-infrared adaptive optics camera, to peer through the outer layers of dust to reveal a huge wall of dust and gas glowing with the intense ultraviolet light from nearby massive young stars. This region is a great example of such a wall and this image provides a very clear view of a star-forming region in the near-infrared [1].

With a resolution ten times higher than it would be without adaptive optics from the ground [2], the image reveals a wealth of detail never observed before. This mountainous section of the nebula reveals a number of unusual structures. There is a long series of parallel ridges that could be produced by a magnetic field, a remarkable almost perfectly smooth wave, and fragments that appear to be in the process of being sheared off the cloud by a strong wind. There is also evidence for a jet of material ejected from a newly-formed star.

The image provides the sharpest view to date of how massive young stars affect their surroundings and influence how star and planet formation proceeds. "It is possible that the Sun formed in such an environment," said Hartigan. "If so, radiation and winds from any nearby massive stars would have affected the masses and atmospheres of the Solar System's outer planets." Astronomers are just beginning to model how such stars affect the evolution of planetary systems.

This spectacular image is a wonderful demonstration of the effectiveness of adaptive optics. It is also the first time that this region has been observed using this technique, so every new detail is a fascinating first glimpse for astronomers and the general public alike, and gives a taste of what could be possible with the upcoming James Webb Space Telescope.
-end-
Notes

[1] The region was examined at the infrared wavelength of molecular hydrogen (2120 nm). Molecular hydrogen is the best way to trace the structures because they would otherwise be rendered invisible by dust blocking them at optical and ultraviolet wavelengths (where the Hubble Space Telescope operates).

[2] The images are about twice as sharp as those from the Hubble Space Telescope at this wavelength.

More information

This research was presented in a paper published today in the Astrophysical Journal Letters.

The team is composed of Patrick Hartigan (Rice University), Turlough Downes (Dublin City University), Andrea Isella (Rice University).

NSF's NOIRLab (National Optical-Infrared Astronomy Research Laboratory), the US center for ground-based optical-infrared astronomy, operates the international Gemini Observatory (a facility of NSF, NRC-Canada, ANID-Chile, MCTIC-Brazil, MINCyT-Argentina, and KASI-Republic of Korea), Kitt Peak National Observatory (KPNO), Cerro Tololo Inter-American Observatory (CTIO), the Community Science and Data Center (CSDC), and Vera C. Rubin Observatory. It is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF and is headquartered in Tucson, Arizona. The astronomical community is honored to have the opportunity to conduct astronomical research on Iolkam Du'ag (Kitt Peak) in Arizona, on Maunakea in Hawai?i, and on Cerro Tololo and Cerro Pachón in Chile. We recognize and acknowledge the very significant cultural role and reverence that these sites have to the Tohono O'odham Nation, to the Native Hawaiian community, and to the local communities in Chile, respectively.

Links


Contacts
Amanda Kocz
Press and Internal Communications Officer
NSF's NOIRLab
Cell: +1 626 524 5884
Email:
amanda.kocz@noirlab.edu

Association of Universities for Research in Astronomy (AURA)

Related Space Telescope Articles from Brightsurf:

Spitzer space telescope legacy chronicled in Nature Astronomy
A national team of scientists Thursday published in the journal Nature Astronomy two papers that provide an inventory of the major discoveries made possible thanks to Spitzer and offer guidance on where the next generation of explorers should point the James Webb Space Telescope (JWST) when it launches in October 2021.

Unveiling rogue planets with NASA's Roman Space Telescope
New simulations show that NASA's Nancy Grace Roman Space Telescope will be able to reveal myriad rogue planets - freely floating bodies that drift through our galaxy untethered to a star.

Hubble makes the first observation of a total lunar eclipse by a space telescope
Taking advantage of a total lunar eclipse, astronomers using the NASA/ESA Hubble Space Telescope have detected ozone in Earth's atmosphere.

Stunning space butterfly captured by ESO telescope
Resembling a butterfly with its symmetrical structure, beautiful colours, and intricate patterns, this striking bubble of gas -- known as NGC 2899 -- appears to float and flutter across the sky in this new picture from ESO's Very Large Telescope (VLT).

CHEOPS space telescope ready for scientific operation
CHEOPS has reached its next milestone: Following extensive tests in Earth's orbit, some of which the mission team was forced to carry out from home due to the coronavirus crisis, the space telescope has been declared ready for science.

Scientists build a 'Hubble Space Telescope' to study multiple genome sequences
Scientists can now simultaneously compare 1.4 million genetic sequences, helping classify how species are related to each other at far larger scales than previously possible.

James Webb Space Telescope could begin learning about TRAPPIST-1 atmospheres in a year
New research from astronomers at the University of Washington uses the intriguing TRAPPIST-1 planetary system as a kind of laboratory to model not the planets themselves, but how the coming James Webb Space Telescope might detect and study their atmospheres, on the path toward looking for life beyond Earth.

Kepler Space Telescope's first exoplanet candidate confirmed
An international team of astronomers announced the confirmation of the first exoplanet candidate identified by NASA's Kepler Mission.

Space telescope detects water in a number of asteroids
Using the infrared satellite AKARI, a Japanese research team has detected the existence of water in the form of hydrated minerals in a number of asteroids for the first time.

The Hubble Space Telescope discovers the most distant star ever observed
An international team, including researchers from the Instituto de Astrofísica de Canarias (IAC) and the University of La Laguna (ULL), participated in the discovery of a star at a distance of nine billion lightyears from Earth.

Read More: Space Telescope News and Space Telescope Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.