Learning And Skilled Performance Use Different Brain Circuits

October 05, 1998

St. Louis, Oct. 5, 1998 -- The parts of the brain that enable you to do a familiar task are different from those that learn that task, a new study confirms.

Researchers at Washington University School of Medicine in St. Louis reached this conclusion after obtaining positron emission tomography (PET) images of people tracing maze patterns. PET is one of the techniques that can reveal which areas of the brain are active.

"Our volunteers used some areas of the brain to learn the maze task but shifted to other areas after practice," says lead researcher Steven E. Petersen, Ph.D., professor of neurology, neurobiology and radiology.

The researchers report their results in the October issue of the Journal of Neurophysiology. Research assistant professor Hanneke van Mier, Ph.D., is first author.

Thirty-two right-handed volunteers took part in the study. They had to move a pen through cut-out mazes while keeping their eyes closed. Half traced with the left hand, half with the right.

When the volunteers first traced a maze, they moved the pen slowly and made many false turns. During this learning period, parts of the brain called the right premotor cortex, the right parietal cortex and the left cerebellum became active, PET images revealed.

After 10 minutes of practice, the volunteers provided another set of images. As they moved the pen through the maze quickly and without making errors, the supplementary motor area, near the junction of the brain's two hemispheres, became active. The areas that were active during learning were quiescent now that the volunteers had gained expertise.

Surprisingly, the hand used to perform the task made no difference to the results, suggesting that some learning areas code abstract information rather than motor instructions. Usually, the right arm activates the left side of the brain, and the left arm activates the right.

The researchers performed this work because a 1994 Washington University study uncovered a circuit shift after a verbal task was learned. "So this seems to be a general phenomenon," van Mier says.

Petersen suggests the brain uses general-purpose processors when faced with a new task. "But if the world asks you to do the same thing over and over," he says, "you develop circuits dedicated to that task."

van Mier H, Tempel LW, Perlmutter JS, Raichle ME, Petersen SE (1998). Changes in brain activity during motor learning measured with PET: Effects of hand of performance and practice. Journal of Neurophysiology, 80, 2177-2200.

The research was funded by the National Institutes of Health and Washington University's McDonnell Center for the Study of Higher Brain Function.

Washington University School of Medicine

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.