Defusing dangerous mutations

October 06, 2005

Heidelberg, October 6, 2005 - Mutations in genes are the basis of evolution, so we owe our existence to them. Most mutations are harmful, however, because they cause cells to build defective proteins. So cells have evolved quality control mechanisms that recognize and counteract genetic mistakes. Now scientists of the Molecular Medicine Partnership Unit (MMPU), a laboratory operated jointly by the European Molecular Biology Laboratory (EMBL) and the University of Heidelberg, have discovered new features of a key quality-control mechanism in our cells. These insights into Nonsense-Mediated Decay (NMD), a process by which cells destroy potentially harmful molecules, promise to clarify our understanding of how some mutations lead to disease. The work appears in the October issue of Molecular Cell.

Both healthy and damaged proteins begin as instructions in genes. Cells read this information and create an RNA molecule, a template that will be used to create proteins. RNAs usually contain extra bits of code that have to be cut out before they can be used. During this cut-and-paste operation, cells attach a group of molecules called the exon junction complex (EJC) to the RNA. An RNA made from a mutant gene usually has an EJC in the wrong position, which activates NMD and destroys the RNA before it can be used to make flawed proteins.

Andreas Kulozik and Matthias Hentze, who jointly run the MMPU, have now discovered that the EJC can be put together from different components, and this influences how the cell recognizes and deals with defects.

"Previously it was believed that animal cells had one standard type of EJC 'machine' which alerted cells to errors and activated NMD," Hentze says. "In the current study we removed one of the components of this machine, a protein called UPF2, and watched how the cell responded. We discovered that there are at least two kinds of NMD: one requires UPF2 and the other does not."

The presence or absence of UPF2 changes the composition of the EJC, giving it different surfaces for other molecules to grip onto. This affects the way that another component, called UPF1, fits onto the machine. UPF1 is directly responsible for calling up the NMD machinery. The study shows that UPF1 can be mounted on both EJC types; the final effect is the same - to efficiently break down faulty RNAs.

Niels Gehring, who headed the project, did extensive studies with colleagues in the MMPU to understand exactly how the pieces of the EJC fit together. "By slightly altering some of the components, we could change the way they snapped onto the RNA and each other," Gehring says. "This gave us a very detailed look at the step-wise way in which the EJC can be assembled in two different ways, and what that means for NMD."

Understanding this process should shed new light on some genetic diseases, says Kulozik, a clinical researcher at the University of Heidelberg. "Some mutations manage to escape NMD and go on to cause disease. Until now we've thought that there is one road leading to NMD; discovering a second one will obviously give us a much clearer look at how cells deal with errors - or fail to do so."

"The goal of EMBL and the University in setting up the MMPU was to create a real marriage between basic research and the clinic to help us understand medically-relevant processes," Hentze says. "The current study is a perfect example, because it takes us all the way from the details of single molecules to an important disease mechanism."
-end-


European Molecular Biology Laboratory

Related RNA Articles from Brightsurf:

A new RNA catalyst from the lab
On the track of evolution: a catalytically active RNA molecule that specifically attaches methyl groups to other RNAs - a research group from the University of Würzburg reports on this new discovery in Nature.

Small RNA as a central player in infections
The most important pathogenicity factors of the gastric pathogen Helicobacter pylori are centrally regulated by a small RNA molecule, NikS.

RNA as a future cure for hereditary diseases
ETH Zurich scientists have developed an RNA molecule that can be used in bone marrow cells to correct genetic errors that affect protein production.

Bringing RNA into genomics
By studying RNA-binding proteins, a research consortium known as ENCODE (Encyclopedia of DNA Elements) has identified genomic sites that appear to code for RNA molecules that influence gene expression.

RNA key in helping stem cells know what to become
If every cell has the same genetic blueprint, why does an eye cell look and act so differently than a brain cell or skin cell?

RNA structures by the thousands
Researchers from Bochum and Münster have developed a new method to determine the structures of all RNA molecules in a bacterial cell at once.

New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus
Researchers in the lab of Neville Sanjana, PhD, at the New York Genome Center and New York University have developed a new kind of CRISPR screen technology to target RNA.

Discovery of entirely new class of RNA caps in bacteria
The group of Dr. Hana Cahová of the Institute of Organic Chemistry and Biochemistry of the CAS, in collaboration with scientists from the Institute of Microbiology of the CAS, has discovered an entirely new class of dinucleoside polyphosphate 5'RNA caps in bacteria and described the function of alarmones and their mechanism of function.

New RNA mapping technique shows how RNA interacts with chromatin in the genome
A group led by scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Japan have developed a new method, RADICL-seq, which allows scientists to better understand how RNA interacts with the genome through chromatin--the structure in which the genome is organized.

Characterising RNA alterations in cancer
The largest and most comprehensive catalogue of cancer-specific RNA alterations reveals new insights into the cancer genome.

Read More: RNA News and RNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.