Receptor could halt blinding diseases, stop tumor growth, preserve neurons after trauma

October 06, 2008

Montreal, October 6, 2008 - An international team of researchers has discovered what promises to be the on-off switch behind several major diseases. In the advance online edition of today's Nature Medicine, scientists from Sainte-Justine Hospital Research Center, the Université de Montréal and the Institut national de la santé et de la recherche médicale (INSERM) in France report how the GPR91 receptor contributes to activate unchecked vascular growth that causes vision loss in common blinding diseases. These findings could also have wide-ranging and positive implications for brain tissue regeneration.

While investigating the molecular mechanisms that lead to vision loss, the research team uncovered that the GPR91 receptor can mediate irregular vascular growth that is responsible for some of the main causes of blindness in the industrial world: retinopathy of prematurity in infants, diabetic retinopathy in adults (vision loss or blindness that affects up to 90 percent of diabetics) or age-related macular degeneration in seniors (central vision loss).

"We found that GPR91 is a master regulator of blood vessel growth, which upon enhanced activation leads to the unchecked and anarchic proliferation of vascular networks, which is the hallmark of retinopathies. This uncontrolled overgrowth can ultimately cause the retina to detach and a person to lose their sight," says Dr. Mike Przemyslaw Sapieha, the study's lead author and a scientist at the Sainte-Justine Hospital Reserch Center and the Université de Montréal.

"With the identification of GPR91 as a key player in this disease process, we can move forward in designing treatments that block the receptor and consequently stop vision loss," adds Dr. Sapieha. "Inhibition of GPR91 has a great therapeutic potential to halt these blinding diseases."

GPR91 to preserve neurons

The team's study also provides promise that the GPR91 receptor could preserve neurons. "Neurons are key sensors in retina oxygenation and serve as key players in the repair process of the retina," explains Dr. Sylvain Chemtob, director of the study and a neonatal researcher at the Sainte-Justine Hospital Research Center and professor at the Université de Montréal's Department of Pediatrics, Ophthalmology, Pharmacology and the School of Optometry.

"Given the similarities between the retina and the brain, we can envisage applying our findings in retina to the brain," says Dr. Chemtob. "Activation of the GPR91 receptor could be beneficial in helping salvage neurons in damaged brain tissue in stroke or head injury victims."

GPR91 to stop cancer growth

This study is the first to examine the wide-ranging implications of GPR91 and to investigate how the receptor, which is present in neurons, responds to stresses and adjust when in its oxygenation state is compromised. "This is a new concept in vascular biology," says Dr. Sapieha, noting it is conceivable that interfering with the GPR91 receptor could be used to stop cancer growth. "If you stop GPR91 from allowing blood vessels to expand and supply a tumour with nutrients and oxygen, one can significantly hamper growth of the cancer."

While these promising investigations on GPR91 were conducted in animals, the receptor is also found in humans, and Dr. Chemtob surmises that extension of the research to human clinical investigations could be in three to fours years. "We expect these findings to have an enormous impact," he says.
About the study:

"The succinate receptor GPR91 in neurons plays a major role in retinal angiogenesis," published in Nature Medicine, was authored by Mike Przemyslaw Sapieha, Sylvain Chemtob, Mirna Sirinyan, David Hamel, Karine Zaniolo, Jean-Sebastien Joyal, Jean-Claude Honoré, Christian Beausejour, Grant Mitchell, Gregor Andelfinger, Sophie Tremblay, Martin Leduc, Lenka Rihakova, Pierre Hardy and Adriana Di Polo (Sainte-Justine Hospital Research Center and Université de Montréal, Quebec, Canada); Daya R Varma and Orval Mamer (McGill University, Montreal, Quebec, Canada); Jang-Hyeon Cho, William H. Klein and Xiuqian Mu (University of Texas MD Anderson Cancer Center, Houston, TX, U.S.A.); Florian Sennlaub and Elsa Kermorvant-Duchemin (Inserm U872, Paris, France).

Partners in research:

This study was funded through grants from the Canadian Institutes of Health Research, the Heart and Stroke Foundation of Quebec, the Fonds de la recherche en santé du Québec, the Heart and Stroke Foundation of Canada, the March of Dimes Birth Defects Foundation, the Robert A. Welch Foundation and the Foundation Fighting Blindness.

On the Web:

About the journal Nature Medicine:
About the Sainte-Justine Hospital Research Center:
About the Université de Montréal:
About McGill University:
About the University of Texas MD Anderson Cancer Center:
About Inserm:

Media contacts:
Sylvain-Jacques Desjardins
International press attaché
Université de Montréal
Telephone: 514-343-7593

Nicole Saint-Pierre
Communications advisor
Public affairs and communications
Sainte-Justine Hospital
Telephone: 514-345-4931, ext. 2555

University of Montreal

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to