U of T researchers reveal Epstein-Barr virus protein contributes to cancer

October 06, 2008

TORONTO, ON - Researchers at the University of Toronto have discovered that the EBNA1 protein of Epstein-Barr virus (EBV) disrupts structures in the nucleus of nasopharyngeal carcinoma (NPC) cells, thereby interfering with cellular processes that normally prevent cancer development.

The study findings are published in the October 3rd edition of the journal PLoS Pathogens and describes a novel mechanism by which viral proteins contribute to carcinogenesis.

EBV is a common herpes virus whose latent infection is strongly associated with several types of cancer including NPC, a tumor that is endemic in several parts of the world. With NPC only a few EBV proteins are expressed, including EBNA1. EBNA1 is required for the persistence of the EBV genomes; however, whether or not EBNA1 directly contributes to the development of tumors has not been clear, until now.

The study conducted by Lori Frappier a professor of molecular genetics and her team at the University of Toronto examined PML nuclear bodies and proteins in EBV-positive and EBV-negative NPC cells. Manipulation of EBNA1 levels in each cell type clearly showed that EBNA1 expression induces the loss of PML proteins and PML nuclear bodies through an association of EBNA1 with the PML bodies. PML nuclear bodies are known to have tumor-suppressive effects due to their roles in regulating DNA repair and programmed cell death, and accordingly, EBNA1 was shown to interfere with these processes.

"The findings support an important role for EBNA1 in the development of NPC, in which EBNA1-mediated disruption of PML nuclear bodies promotes the survival of cells with DNA damage," said Frappier. "Since EBNA1 is expressed in all EBV-associated tumors, including B-cell lymphomas and gastric carcinoma, these findings raise the possibility that EBNA1 could play a similar role in the development of these cancers. The cellular effects of EBNA1 in other EBV-induced cancers will require further investigation."
-end-


University of Toronto

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.