Pressing the accelerator on quantum robotics

October 06, 2014

Quantum computing will allow for the creation of powerful computers, but also much smarter and more creative robots than conventional ones. This was the conclusion arrived at by researchers from Spain and Austria, who have confirmed that quantum tools help robots learn and respond much faster to the stimuli around them.

Quantum mechanics has revolutionised the world of communications and computers by introducing algorithms which are much quicker and more secure in transferring information. Now researchers from the Complutense University of Madrid (UCM) and the University of Innsbruck (Austria) have published a study in the journal 'Physical Review X' which states that these tools can be used to apply to robots, automatons and the other agents that use artificial intelligence (AI).

They demonstrate for the first time that quantum machines can respond the best and act the fastest against the environment surrounding them. More specifically, they adapt to situations where the conventional ones, which are much slower, cannot finish the learning and response processes.

"In the case of very demanding and 'impatient' environments, the outcome is that the quantum robot can adapt itself and survive, while the classic robot is destined to collapse," explains G. Davide Paparo and Miguel A. Martín-Delgado, the two researchers from UCM who have participated in the study.

Their theoretical work has focused on using quantum computing to accelerate ahead with one of the most difficult points to resolve in information technology: machine learning, which is used to create highly accurate models and predictions. It is applied, for example, to know how the climate or an illness will evolve or in the development of Internet search engines.

More creative quantum robots

"Building a model is actually a creative act, but conventional computers are no good at it," says Martín-Delgado. "That is where quantum computing comes into play. The advances it brings are not only quantitative in terms of greater speed, but also qualitative: adapting better to environments where the classic agent does not survive. This means that quantum robots are more creative".

The authors assess the scope of their study as such: "It means a step forward towards the most ambitious objective of artificial intelligence: the creation of a robot that is intelligent and creative, and that is not designed for specific tasks".

This work comes under a new discipline, the so-called 'quantum AI', an area in which the company Google has started to invest millions of dollars via the creation of a specialised laboratory in collaboration with the NASA.
-end-
References:

Giuseppe Davide Paparo, Vedran Dunjko, Adi Makmal, Miguel Angel Martin-Delgado, and Hans J. Briegel. "Quantum Speedup for Active Learning Agents". Phys. Rev. X 4, 031002, July 2014.

FECYT - Spanish Foundation for Science and Technology

Related Quantum Computing Articles from Brightsurf:

Bringing a power tool from math into quantum computing
The Fourier transform is a mathematical operation essential to virtually all fields of physics and engineering.

New detector breakthrough pushes boundaries of quantum computing
A new paper published in Nature shows potential for graphene bolometers to become a game-changer for quantum technology

A molecular approach to quantum computing
Molecules in quantum superposition could help in the development of quantum computers.

Cosmic rays may soon stymie quantum computing
Infinitesimally low levels of radiation, such as from incoming cosmic rays, may soon stymie progress in quantum computing.

UVA pioneers study of genetic diseases with quantum computing
Scientists are harnessing the mind-bending potential of quantum computers to help us understand genetic diseases - even before quantum computers are a thing.

New method predicts spin dynamics of materials for quantum computing
Researchers at UC Santa Cruz have developed a theoretical foundation and new computational tools for predicting a material's spin dynamics, a key property for building solid-state quantum computing platforms and other applications of spintronics.

Speeding-up quantum computing using giant atomic ions
An international team of researchers have found a new way to speed up quantum computing that could pave the way for huge leaps forward in computer processing power.

Boson particles discovery provides insights for quantum computing
Researchers working on a U.S. Army project discovered a key insight for the development of quantum devices and quantum computers.

In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.

Diversity may be key to reducing errors in quantum computing
In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.

Read More: Quantum Computing News and Quantum Computing Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.