Nav: Home

Shedding light on the limits of the expanded genetic code

October 06, 2016

This news release was issued on 14-Sept-2016

In 2014, scientists made a huge news splash when they reported the ability to grow bacteria with an expanded genetic code. Critics feared the rise of unnatural creatures; others appreciated the therapeutic potential of the development. Now researchers have found that the expanded code might have an unforeseen limitation. A study in the Journal of the American Chemical Society reports that these novel components can damage cells when they are exposed to light.

It is already well-known that the naturally existing genetic code is susceptible to damage from ultraviolet (UV) light. Living cells can usually repair UV-damaged DNA. However, the two new nucleoside components -- which are bases paired with a sugar moiety -- are much better at absorbing light in the near-visible range. This type of light is abundant in the sun's spectrum of radiation reaching the Earth's surface and in the emission spectrum of standard fluorescent lighting. Carlos E. Crespo-Hernández and colleagues wanted to find out the impact of this enhanced ability of the synthetic nucleosides, known as d5SICS and dNaM, to absorb light in this range.

The researchers tested the synthetic nucleosides in human skin cancer cells. When exposed to near-visible light, cell growth decreased dramatically, while the amount of reactive oxygen species, which can cause cellular damage, increased. The results suggest that using an expanded code could lead to unintended light-induced consequences for the genetic material, the researchers say.
-end-
The authors acknowledge funding from the National Science Foundation CAREER Program (Grant #1255084).

The abstract that accompanies this study is available here.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With nearly 157,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: TwitterFacebook

American Chemical Society

Related Light Articles:

Light in a new light
In a paper published today in Nature's NPJ Quantum Information, Omar Magaña-Loaiza, assistant professor in the Louisiana State University Department of Physics & Astronomy, and his team of researchers describe a noteworthy step forward in the quantum manipulation and control of light.
Shedding light on the reaction mechanism of PUVA light therapy for skin diseases
Together with their Munich-based colleagues, a team of physical chemists from Heinrich Heine University Düsseldorf (HHU) has clarified which chemical reactions take place during PUVA therapy.
Light for the nanoworld
An international team headed up by Alexander Holleitner and Jonathan Finley, physicists at the Technical University of Munich (TUM), has succeeded in placing light sources in atomically thin material layers with an accuracy of just a few nanometers.
Discovered: A new property of light
Researchers have discovered that light can possess a new property, self-torque.
Following the light
Considering that light is the driving force behind the growth and productivity of reef ecosystems, scientists are interested in understanding the relationship between primary productivity and varying light conditions.
'Quiet' light
Spectrally pure lasers lie at the heart of precision high-end scientific and commercial applications, thanks to their ability to produce near-perfect single-color light.
Scientists discover novel process to convert visible light into infrared light
Columbia and Harvard scientists have developed a novel chemical process to convert infrared energy into visible light, allowing innocuous radiation to penetrate living tissue and other materials without the damage caused by high-intensity light exposure.
Light up logic: Engineers from UTokyo and RIKEN perform computational logic with light
For the first time, researchers performed logic operations -- the basis of computation -- with a chemical device using electric fields and ultraviolet light.
Blue light special: FSU researcher finds new chemical clusters emit highly efficient light
A Florida State University research team has discovered that a unique organic-inorganic compound containing zero-dimensional molecular clusters emits a highly efficient blue light.
Light provides spin
Physicists at FAU have proven that incoming light causes the electrons in warm perovskites to rotate thus influencing the direction of the flow of electrical current.
More Light News and Light Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.