Nav: Home

New insight into course and transmission of Zika infection

October 06, 2016

BOSTON - Though first documented 70 years ago, the Zika virus was poorly understood when it burst onto the scene in the Americas in 2015. In one of the first and largest studies of its kind, a research team lead by virologists at Beth Israel Deaconess Medical Center (BIDMC) has characterized the progression of two strains of the viral infection. The study, published online this week in Nature Medicine, revealed Zika's rapid infection of the brain and nervous tissues, and provided evidence of risk for person-to-person transmission.

"We found, initially, that the virus replicated very rapidly and was cleared from the blood in most animals within ten days," said corresponding author James B. Whitney, PhD, a principal investigator at the Center for Virology and Vaccine Research (CVVR) at BIDMC. "Nevertheless, we observed viral shedding in other bodily fluids such as spinal fluid, saliva, urine and semen, up to three weeks after the initial infection was already cleared."

Whitney and colleagues infected 36 rhesus and cynomolgus macaques with strains of the Zika virus derived from Puerto Rico and Thailand. Over the next four weeks, the scientists tested blood, tissues, cerebrospinal fluid (CSF) and mucosal secretions for the presence of Zika virus, as well as monitored the immune response during early infection. Their data shed new light on the previously little-studied virus, and might help explain how Zika causes the devastating neurological complications seen in adults and unborn babies.

"Of particular concern, we saw extraordinarily high levels of Zika virus in the brain of some of the animals - the cerebellum, specifically - soon after infection," said Whitney, who is also assistant professor of medicine at Harvard Medical School and an associate member of the Ragon Institute of MGH, MIT, and Harvard. "Only one in five adults has noticeable symptoms of infection. However, if our data translate to humans, there may be need for enhanced clinical vigilance for any persons presenting with unusual neurological symptoms, and they should be tested for Zika infection."

Like in humans, Zika infection in the experimental primates appeared relatively mild, producing fever and an increase in blood cells associated with the immune response. All recovered without intervention. But while the virus was cleared from the blood stream within ten days, the researchers observed Zika virus in urine as soon as two days after infection in some subjects. By the third day after infection, Zika was detectable in the saliva of up to half of the subjects, where it remained until the study ended at 28 days after infection.

"This underscores the need to understand what's happening in anatomic reservoirs where the virus may hide for a long time," said Whitney.

Early in infection, the researchers found high levels of Zika in the genital tracts of both sexes. Zika remained detectable in semen and in uterine tissues until the end of the study. The first sexually transmitted case of Zika in humans was documented in 2007, but these new findings suggest transmission may occur long after Zika symptoms - if they ever appeared - resolve. Because the researchers found high levels of the virus in semen and uterus, but little in vaginal secretions, the findings may also illuminate sexual transmission of Zika.

"We found that male-to-female transmission may be easier, while female-to-male may be less likely," said Whitney. "Nonetheless, the high levels of Zika we observed in the uterus underscore the danger to a developing fetus."

The new study also highlights the need for the rapid development of vaccines and therapies against the virus. Zika infection in pregnant women has been shown to lead to fetal microcephaly and other major birth defects. The World Health Organization declared the virus epidemic a global public health emergency on February 1, 2016.
-end-
Study coauthors include: (co-first authors) Christa E. Osuna and So-Yon Lim, both of the CVVR at BIDMC; Claire Deleage of Leidos Biomedical Research at Frederick National Laboratory for Cancer Research,; Bryan D. Griffin, Derek Stein, Lukas T. Schroeder, Robert Omage, Ma Luo and (co-first author) David Safronetz of the National Microbiology Laboratory, Canada; Katharine Best, Peter T. Hraber, Erwing Fabian Cardozo Ojeda and Alan S. Perelson of Los Alamos National Laboratory; Hanne Andersen-Elyard and (co-first author) Mark G. Lewis of Bioqual; Scott Huang, Dana L. Vanlandingham and Stephen Higgs of Biosecurity Research Institute, Kansas State University.

About Beth Israel Deaconess Medical Center

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and consistently ranks as a national leader among independent hospitals in National Institutes of Health funding.

BIDMC is in the community with Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Beth Israel Deaconess Hospital-Plymouth, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Healthcare, Beth Israel Deaconess HealthCare, Community Care Alliance and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Rehabilitation Center and is a research partner of Dana-Farber/Harvard Cancer Center and the Jackson Laboratory. BIDMC is the official hospital of the Boston Red Sox. For more information, visit http://www.bidmc.org.

Beth Israel Deaconess Medical Center

Related Immune Response Articles:

Discovering the early age immune response in foals
Researchers at the Cornell University College of Veterinary Medicine have discovered a new method to measure tiny amounts of antibodies in foals, a finding described in the May 16 issue of PLOS ONE.
Nixing the cells that nix immune response against cancer
For first time, study characterizes uptick of myeloid-derived suppressor cells in the spleens of human cancer patients, paving the way for therapies directed against these cells that collude with cancer.
Jumbled chromosomes may dampen the immune response to tumors
How well a tumor responds to immunotherapy may depend in part on whether its chromosomes are intact or in a state of disarray, a new study reports.
Tailored organoid may help unravel immune response mystery
Cornell and Weill Cornell Medicine researchers report on the use of biomaterials-based organoids in an attempt to reproduce immune-system events and gain a better understanding of B cells.
Tweaking the immune response might be a key to combat neurodegeneration
Patients with Alzheimer's or other neurodegenerative diseases progressively loose neurons yet cannot build new ones.
Estrogen signaling impacted immune response in cancer
New research from The Wistar Institute showed that estrogen signaling was responsible for immunosuppressive effects in the tumor microenvironment across cancer types.
No platelets, no immune response
When a virus attacks our organism, an inflammation appears on the affected area.
Malaria: A genetically attenuated parasite induces an immune response
With nearly 3.2 billion people currently at risk of contracting malaria, scientists from the Institut Pasteur, the CNRS and Inserm have experimentally developed a live, genetically attenuated vaccine for Plasmodium, the parasite responsible for the disease.
New finding will help target MS immune response
Researchers have made another important step in the progress towards being able to block the development of multiple sclerosis and other autoimmune diseases.
Flu infection reveals many paths to immune response
A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological pathways.

Related Immune Response Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".