Nav: Home

Scientists rev up speed of bionic enzyme reactions

October 06, 2016

Bionic enzymes got a needed boost in speed thanks to new research at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab). By pairing a noble metal with a natural enzyme, scientists created a hybrid capable of churning out 2,550 product molecules per hour, a frequency comparable to biological counterparts.

The development, to be reported Thursday, Oct. 6, in the journal Science, represents a major advance for artificial metalloenzymes, which promise to open up a world of beneficial molecular products not currently possible with natural enzymes.

"Our work shows that artificial metalloenzymes can be practical and not just a cool curiosity," said study principal investigator John Hartwig, senior faculty scientist at Berkeley Lab's Chemical Sciences Division.

Earlier this year, Hartwig and his lab published a study in which they replaced the iron in the muscle protein myoglobin with iridium, a noble metal not found in living organisms. They demonstrated that the resulting hybrid is an enzyme that catalyzes a chemical reaction that no natural enzyme catalyzes.

The researchers chose myoglobin for that study because it is a well-studied protein that is easy to manipulate. It was an important proof of concept, but a key drawback was the new bionic enzyme's relatively slow reaction speed. Reactions from comparable natural enzymes occur about 1,000 times faster.

"The artificial metalloenzymes we created made reactions occur faster than if the enzymes weren't there at all, but the rates were still much slower than those of natural enzymes," said Hartwig, who also holds an appointment as a UC Berkeley professor of chemistry.

As the need for speed is key in enzymatic reactions, the researchers switched the biological component from myoglobin to CYP119, part of a family of common enzymes called cytochrome P450, or CYPs. CYP proteins bind iron inside the organic molecule porphyrin and catalyze reactions of large and small organic molecules with oxygen, whereas myoglobin has evolved to simply bind oxygen.

"Our starting point was an enzyme so that we can more easily emulate the properties of a biological catalyst," said study lead author Hanna Key, who did this work as a UC Berkeley graduate student. "We modified a system that we've reported before so that it better reflects the beneficial properties of an enzyme. The artificial metalloenzyme reflects both the reactivity of iridium metal and the selectivity and speed of a natural enzyme."

Key worked with the other co-lead author of the study, Pawel Dydio, a former Berkeley Lab postdoctoral fellow who is now an assistant professor of chemistry at the University of Strasbourg in France.

They replaced iron porphyrin in the CYP119 enzyme with iridium porphyrin, and tested the resulting reactions catalyzed by the new hybrid. The revved up reaction rates were within an order of magnitude of the median rates for natural enzymes. This puts hybrid enzymes on a more competitive footing when matched up to their natural counterparts.

In addition to speed, the study authors noted other properties of their bionic enzyme that are characteristic of natural enzymes.

"We chose the CYP119 enzymes because they are known for being stable at high temperatures and high pressure, and they can bind large, organic molecules," said Hartwig. "They can also be recycled; the catalyst is not consumed during the chemical reaction, so it can continue to be reused. For every molecule of the enzyme, 35,000 molecules of the product were produced."

Key noted that a major critique of the field of artificial metalloenzymes is that it is not practical.

"Our study is an advance in the practicality of this approach," said Key. "We can really start to exploit the attributes of each component."

The scientists pointed out that among the compounds catalyzed by the new bionic enzyme, there are those considered medicinally active, making them potential candidates for future drug development.

One of the next steps, said Hartwig, is to design the enzyme so that it can assemble within a cell.
-end-
The work was funded through Berkeley Lab's Laboratory Directed Research and Development (LDRD) program designed to seed innovative science and new research directions.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Lawrence Berkeley National Laboratory

Related Enzyme Articles:

Enzyme catalyzed decomposition of 4-hydroxycyclophosphamide
Oxazaphosphorine cytostatics (Cyclophosphamide, Ifosfamide) are often used and very effective anticancer agents; but so far little is known about the molecular basis for the antitumor effect.
The carpenter enzyme gives DNA the snip
Enzyme follows a two-step verification system before cutting and repairing DNA damage.
Cellular senescence prevented by the SETD8 enzyme
An enzyme that blocks cellular senescence and its mechanisms has been discovered by a Japanese research team.
Enzyme key to learning in fruit flies
University of California, Riverside-led research finds enzyme that is key to learning in fruit flies.
Old enzyme, new role
A team of researchers at the University of Delaware has discovered a new function for an enzyme that has long been known to have a central role in bacterial metabolism.
Enzyme research provides a new picture of depression
Depression is the predominant mental disease and constitutes the most common cause of morbidity in developed countries.
Mysteries of enzyme mechanism revealed
International team led by University of Leicester unveil a hidden step in enzyme mechanism.
Single enzyme controls 2 plant hormones
Scientists at Washington University in St. Louis have isolated the first enzyme shown to be capable of controlling the levels of two distinct plant hormones, involved both in normal growth and in responses to infections.
New enzyme-mapping advance could help drug development
Scientists at MIT and the University of São Paulo in Brazil have identified the structure of an enzyme that could be a good target for drugs combatting three diseases common in the developing world.
Severity of enzyme deficiency central to favism
The congenital disease favism causes sickness and even jaundice in patients after they consume beans.

Related Enzyme Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...