Nav: Home

Iowa State researchers fabricate microfibers for single-cell studies, tissue engineering

October 06, 2016

AMES, Iowa -Iowa State University researchers have created a new way to design and fabricate microfibers that support cell growth and could be useful tools for reconnecting nerves and regenerating other damaged tissues.

"Neural stem cells on our polymer fibers could survive, differentiate and grow," said Nastaran Hashemi, an Iowa State assistant professor of mechanical engineering and leader of an Iowa State team producing microfibers with the help of microfluidics, the study of fluids moving through channels just a millionth of a meter wide.

"These new fibrous platforms could also be used for cell alignment which is important in applications such as guiding nerve cell growth, engineered neurobiological systems and regenerating blood vessels, tendons and muscle tissue," Hashemi said.

The research team's findings were recently published in Biomacromolecules, a journal of the American Chemical Society. In addition to Hashemi, co-authors are Donald Sakaguchi, a professor of genetics, development and cell biology; Reza Montazami, an assistant professor of mechanical engineering; first author Farrokh Sharifi, a doctoral student in mechanical engineering; Bhavika Patel, a doctoral student in genetics, development and cell biology; and Adam Dziulko, a graduate who earned a 2015 bachelor's degree in genetics.

The project has been supported by a two-year, $202,000 grant from the Office of Naval Research. The early stage of the project was supported by the Iowa State Presidential Initiative for Interdisciplinary Research and the U.S. Army Medical Research and Materiel Command.

Hashemi said the Office of Naval Research is supporting the project because it wants to learn more about traumatic brain injury.

"We are interested in understanding how shock waves created by blows to the head can create microbubbles that collapse near the nerve cells, or neurons in the brain, and damage them," Hashemi said.

The Iowa State researchers are working to build a microfiber scaffold to support the cells and allow them to survive for the Navy's studies of brain injuries. One day, the scaffold technology could help repair nerves or tissues damaged by injuries or disease.

"Our approach to fiber fabrication is unique," Hashemi said. "There is no high voltage, high pressure or high temperatures. And so one day I think we can encapsulate cells within our fibers without damaging them."

The Iowa State researchers have developed an approach that uses microfluidic fabrication methods to pump polycaprolactone (PCL) through tiny channels to produce microfibers. The fibers are 2.6 to 36.5 millionths of a meter in diameter. Their shapes can be controlled. So can their surface patterns. They're also flexible, biocompatible and biodegradable.

"The novelty here is the fabrication method," Hashemi said. "We employ hydrodynamic forces to influence the orientation of molecules for the fabrication of these fiber structures that have different properties along different directions."

The Iowa State researchers demonstrated that neural stem cells were able to attach and align on the microfiber scaffold.

"In this study, cell death was minimal, and cell proliferation was affected by changing the features of the fibrous scaffold," the researchers reported in their paper.

That finding has the researchers thinking their technology could be a tool that helps tissue engineers find ways to regenerate nerve cells and other tissues:

"By mimicking the microenvironment of the nervous system, regeneration can be enhanced due to biological and chemical cues in the environment," the researchers wrote in their paper. "In addition, the PCL fibers can be applied in regeneration of other tissues such as muscle, tendons and blood vessels."
-end-


Iowa State University

Related Blood Vessels Articles:

Study: Use of prefabricated blood vessels may revolutionize root canals
Researchers at OHSU in Portland, Oregon, have developed a process by which they can engineer new blood vessels in teeth, creating better long-term outcomes for root canal patients and clinicians.
New findings on formation and malformation of blood vessels
In diseases like cancer, diabetes, rheumatism and stroke, a disorder develops in the blood vessels that exacerbates the condition and obstructs treatment.
Targeting blood vessels to improve cancer immunotherapy
EPFL scientists have improved the efficacy of cancer immunotherapy by blocking two proteins that regulate the growth of tumor blood vessels.
Reprogrammed blood vessels promote cancer spread
Tumor cells use the bloodstream to spread in the body.
Neurons modulate the growth of blood vessels
A team of researchers at Karlsruhe Institute of Technology shake at the foundations of a dogma of cell biology.
Sensor for blood flow discovered in blood vessels
The PIEZO1 cation channel translates mechanical stimulus into a molecular response to control the diameter of blood vessels.
Blood vessels control brain growth
Blood vessels play a vital role in stem cell reproduction, enabling the brain to grow and develop in the womb, reveals new UCL research in mice.
No blood vessels without cloche
After 20 years of searching, scientists discover the mystic gene controlling vessel and blood cell growth in the embryo.
New way of growing blood vessels could boost regenerative medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Regenerating blood vessels gets $2.7 million grant
Biomedical engineers in the Cockrell School of Engineering at The University of Texas at Austin have received $2.7 million in funding to advance a treatment that regenerates blood vessels.

Related Blood Vessels Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".