How plants grow new lateral roots

October 06, 2016

Researchers have used 3D live imaging to observe the formation process of lateral roots in plants, and clarified part of the mechanism that creates new meristematic tissue. If the root formation mechanism in plants is revealed further, this could potentially be used to control plant growth by artificially altering root system architecture. These findings were published on August 10 in the online version of Development, and clips of the live imaging were selected as the Featured Movie of the current issue (Vol. 143/Issue 18).

The research group included Professor FUKAKI Hidehiro (Kobe University, Graduate School of Science), Project Assistant Professor GOH Tatsuaki (Kobe University, currently Assistant Professor at Nara Institute of Science and Technology), the University of Nottingham and the University of Montpellier.

Plants develop a root system adapted to their environment by growing new branched roots from existing roots. Root systems consist of the primary root, which is the first to grow after germination; lateral roots, created from internal tissue in existing roots such as the primary root; and adventitious roots, which sprout from above ground tissues. There is only one primary root, but after plant germination many lateral roots and adventitious roots are created. Since these latter types make up the majority of the root system, they have a large influence on its structure.

For a root to grow, new cells must be created in the root's meristematic tissue, located at the tip. In contrast to the primary root's origins as a radicle created in embryo, lateral roots are made from a subset of inner layer cells after germination. Thanks to research in genetics and plant tissue our understanding of the mechanism that creates the primary root has advanced, but there are still many unknown factors in the mechanism that creates lateral roots from a small number of cells.

The research group established a method enabling long-term observation of the developmental process of new roots (lateral roots) formed after germination of the model plant Arabidopsis thaliana. Their method is based on 3D live imaging technology using confocal laser microscopy.

By comparing plant variants that showed abnormalities in the morphogenesis of lateral roots to plants with a natural development process, they elucidated part of the mechanism that develops lateral roots and the root meristem. Notably, they clarified the mechanism that establishes the "quiescent center cells" - important cells for the functioning of the meristem.

Now we can observe the development process of lateral roots over time on a cellular level, our understanding should deepen regarding various processes: how individual cells divide, how they mutate, and how the cells coordinate to create new roots. In the future, if we can fully decode the mechanism for increasing roots, we could potentially regulate the growth of various crops and garden plants by artificially altering root development.
-end-


Kobe University

Related Plants Articles from Brightsurf:

When plants attack: parasitic plants use ethylene as a host invasion signal
Researchers from Nara Institute of Science and Technology have found that parasitic plants use the plant hormone ethylene as a signal to invade host plants.

210 scientists highlight state of plants and fungi in Plants, People, Planet special issue
The Special Issue, 'Protecting and sustainably using the world's plants and fungi', brings together the research - from 210 scientists across 42 countries - behind the 2020 State of the World's Plants and Fungi report, also released today by the Royal Botanic Gardens, Kew.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

How do plants forget?
The study now published in Nature Cell Biology reveals more information on the capacity of plants, identified as 'epigenetic memory,' which allows recording important information to, for example, remember prolonged cold in the winter to ensure they flower at the right time during the spring.

The revolt of the plants: The arctic melts when plants stop breathing
A joint research team from POSTECH and the University of Zurich identifies a physiologic mechanism in vegetation as cause for Artic warming.

How plants forget
New work published in Nature Cell Biology from an international team led by Dr.

Ordering in? Plants are way ahead of you
Dissolved carbon in soil can quench plants' ability to communicate with soil microbes, allowing plants to fine-tune their relationships with symbionts.

When good plants go bad
Conventional wisdom suggests that only introduced species can be considered invasive and that indigenous plant life cannot be classified as such because they belong within their native range.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Can plants tell us something about longevity?
The oldest living organism on Earth is a plant, Methuselah a bristlecone pine (Pinus longaeva) (pictured below) that is over 5,000 years old.

Read More: Plants News and Plants Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.