Nav: Home

How plants grow new lateral roots

October 06, 2016

Researchers have used 3D live imaging to observe the formation process of lateral roots in plants, and clarified part of the mechanism that creates new meristematic tissue. If the root formation mechanism in plants is revealed further, this could potentially be used to control plant growth by artificially altering root system architecture. These findings were published on August 10 in the online version of Development, and clips of the live imaging were selected as the Featured Movie of the current issue (Vol. 143/Issue 18).

The research group included Professor FUKAKI Hidehiro (Kobe University, Graduate School of Science), Project Assistant Professor GOH Tatsuaki (Kobe University, currently Assistant Professor at Nara Institute of Science and Technology), the University of Nottingham and the University of Montpellier.

Plants develop a root system adapted to their environment by growing new branched roots from existing roots. Root systems consist of the primary root, which is the first to grow after germination; lateral roots, created from internal tissue in existing roots such as the primary root; and adventitious roots, which sprout from above ground tissues. There is only one primary root, but after plant germination many lateral roots and adventitious roots are created. Since these latter types make up the majority of the root system, they have a large influence on its structure.

For a root to grow, new cells must be created in the root's meristematic tissue, located at the tip. In contrast to the primary root's origins as a radicle created in embryo, lateral roots are made from a subset of inner layer cells after germination. Thanks to research in genetics and plant tissue our understanding of the mechanism that creates the primary root has advanced, but there are still many unknown factors in the mechanism that creates lateral roots from a small number of cells.

The research group established a method enabling long-term observation of the developmental process of new roots (lateral roots) formed after germination of the model plant Arabidopsis thaliana. Their method is based on 3D live imaging technology using confocal laser microscopy.

By comparing plant variants that showed abnormalities in the morphogenesis of lateral roots to plants with a natural development process, they elucidated part of the mechanism that develops lateral roots and the root meristem. Notably, they clarified the mechanism that establishes the "quiescent center cells" - important cells for the functioning of the meristem.

Now we can observe the development process of lateral roots over time on a cellular level, our understanding should deepen regarding various processes: how individual cells divide, how they mutate, and how the cells coordinate to create new roots. In the future, if we can fully decode the mechanism for increasing roots, we could potentially regulate the growth of various crops and garden plants by artificially altering root development.

Kobe University

Related Plants Articles:

Transgenic plants against malaria
Scientists have discovered a gene that allows to double the production of artemisinin in the Artemisia annua plant.
How plants can tell friend from foe
The plant's immune system can recognize whether a piece of RNA is an invader or not based on whether the RNA has a threaded bead-like structure at the end, say University of Tokyo researchers.
Plants at the pump
Regular, unleaded or algae? That's a choice drivers could make at the pump one day.
How do people choose what plants to use?
There are about 400,000 species of plants in the world.
Defend or grow? These plants do both
From natural ecosystems to farmers' fields, plants face a dilemma of energy use: outgrow and outcompete their neighbors for light, or defend themselves against insects and disease.
How do plants protect themselves against sunburn?
To protect themselves against UV-B, which are highly harmful, plants have developed cellular tools to detect them and build biochemical defenses.
Pea plants demonstrate ability to 'gamble' -- a first in plants
An international team of scientists from Oxford University, UK, and Tel-Hai College, Israel, has shown that pea plants can demonstrate sensitivity to risk -- namely, that they can make adaptive choices that take into account environmental variance, an ability previously unknown outside the animal kingdom.
A 'Fitbit' for plants?
Knowing what physical traits a plant has is called phenotyping.
How plants conquered the land
Research at the University of Leeds has identified a key gene that assisted the transition of plants from water to the land around 500 million years ago.
Plants are 'biting' back
Calcium phosphate is a widespread biomineral in the animal kingdom: Bones and teeth largely consist of this very tough mineral substance.

Related Plants Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...