Nav: Home

Why tumors evade immunotherapy

October 06, 2016

Immunotherapy is a new and highly promising form of treatment for cancer. In many patients, however, tumors recur after immunotherapy. In the latest issue of the Journal of Experimental Medicine, the members of a research team from the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), the Berlin Institute of Health (BIH), and Charité - Universitätsmedizin Berlin explain why some tumors recur and how this can be prevented. The findings will aid the selection of suitable target points for immunotherapy.

One form of immunotherapy for cancer is T-cell receptor gene therapy. It involves removing T-cells (a type of immune cell) from the blood and altering them in the test tube to enable them to target cancer cells. The cells are then re-introduced into the patient's bloodstream, where they find and destroy the tumor cells. In clinical trials, this procedure has proved effective for some types of cancer, but it has often been found that new tumors recurred after treatment.

"The tumors are not recognized by the T-cells," explains biologist Dr. Ana Textor. The postdoc researcher in the team headed by Prof. Thomas Blankenstein at the MDC and the Charité is the lead author of the current study. "We want to find out how to reduce the frequency with which the cancer recurs after treatment," says Dr. Textor.

To achieve this, Textor focused on a particular molecule on the cell surface, the epitope. Epitopes are at the heart of the immune response. They are produced inside the cell by specialized enzymes, which split and trim proteins into short fragments and send them to the cell surface as epitopes. In cancer, proteins are pathologically altered through mutation; they too appear on the cell surface, in this case as "neo-epitopes." A cell with a neo-epitope can be recognized by T-cells, which then destroy the cell.

Successful T-cell receptor gene therapy involves training T-cells with the help of a suitable neo-epitope. T-cells are modified to recognize the neo-epitope and thus recognize and destroy the tumor.

In their experiments, the researchers trained two different types of T-cell, each of which recognized one of two epitopes that are characteristic of tumors. One of the T-cell types permanently destroyed the tumors in a mouse model. After treatment with the other T-cell type, initial tumor regression was followed by recurrence.

The researchers found that when the tumor recurred, the epitopes were no longer present on the cell surface in sufficient quantity. This was because the epitopes in these cancer cells were no longer correctly trimmed enzymatically - in this case by the enzyme ERAAP. ERAAP is not being properly activated until the cell is stimulated by the signal molecule interferon gamma. The tumor cells, however, were insensitive to interferon gamma and could no longer be recognized by the T-cells because they were no longer producing the epitope.

By contrast, the epitopes on the cells of the successfully treated tumor did not require processing by ERAAP and were therefore also not dependent on stimulation by interferon gamma.

The new findings thus represent an important step towards the more successful application of T-cell receptor gene therapy, as Textor explains: "Epitopes that do not need processing by the enzyme ERAAP are therefore likely to be a better choice for immunotherapy."
-end-
The study was funded by the German Research Foundation (Sonderforschungsbereich-Transregio, SFB-TR36).

About the Max Delbrück Center

The Max Delbrück Center for Molecular Medicine in the Helmholtz Association was founded in January 1992 on the recommendation of the German Council of Science and Humanities ("Wissenschaftsrat") with the goal of linking basic science to clinical research. The MDC integrated parts of three former Central Institutes of the GDR Academy of Sciences and was named for Max Delbrück, a physicist, biologist, and Nobel Prize winner. Currently the institute employs more than 1600 people from nearly 60 countries; over 1300 of those are directly involved in research. The MDC's annual budget is over 80 million Euros, along with substantial third-party funding obtained by individual scientific groups. As is the case with all Helmholtz institutes, the MDC receives 90 percent of its funding from the federal government and 10 percent from Berlin, the state where it resides.

About Berlin Institute of Health (BIH)

The Berlin Institute of Health (BIH) is a biomedical research institution focusing on translational research and precision medicine. BIH is dedicated to improving the prediction in progressive diseases and developing new medicinal products for advanced therapies in order to improve patients' quality of life. The institute is committed to providing excellent research solutions and innovation enabling value-based, personalized healthcare. Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) are independent, member entities within BIH.

Max Delbrück Center for Molecular Medicine in the Helmholtz Association

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...