Nav: Home

New method provides a tool to develop nematode-resistant soybean varieties

October 06, 2016

URBANA, Ill. - Soybean cyst nematode is the number one soybean pest worldwide, accounting for estimated annual losses of nearly $1.3 billion in the United States. Some soybean varieties have resistance to the tiny parasitic worms through conventional breeding of naturally occurring resistance genes, but the current level of resistance is becoming less reliable.

"Our interest is in finding new sources of resistance, because the sources that people have been using are breaking down. Nematodes are becoming better at overcoming the resistance we have in current cultivars. We are also, interested in improving our understanding of how this resistance works so we can do a better job of selecting for it," says University of Illinois plant breeder, Brian Diers.

In 2012, U of I geneticist Matthew Hudson, Diers, and Andrew Bent, a collaborator at the University of Wisconsin, discovered the naturally occurring genetic locus (region on a chromosome) that is critical in controlling resistance to soybean cyst nematode, but that was only the beginning.

"It turns out that at this locus, there's a repeat of four genes," Diers explains. "Different diverse soybean types that are resistant have different numbers of repeats. For example, in PI 88788, which is the original source of SCN resistance for most soybean varieties in the Midwest, there are nine repeats of those four genes. In the susceptible varieties, there's only one copy of those four genes. Another source of resistance, Peking, has three copies of those repeats."

This difference in repeat number is known as copy number variation, and is more common than previously thought. But before now, there was no easy or cost-effective way to quantify the number of gene repeats. Using a method recently developed in Hudson's laboratory, the number of gene repeats can be accurately monitored by measuring the ratio between two genes.

Although the researchers suspected that having more copies of the gene sequence might confer a greater degree of resistance, they had no way of testing their suspicions before the new assay was developed. After getting the new assay, the team set to work again.

"We grew soybean plants in a greenhouse, inoculated them with nematodes, and then used the assay to determine how many repeats each plant had. As predicted, we found that the more repeats a plant had, the more resistant it was," Diers explained. "This proved that the number of repeats is important."

Armed with this information, the researchers plan to look at the number of repeats present in existing nematode-resistant soybean varieties in an attempt to explain why some display better resistance than others in field settings. They also plan to improve breeding programs by ensuring parental lines have the maximum number of repeats available in a given genotype, and to select for new variants with additional copies that may show superior resistance.

"Ultimately," Diers adds, "if we can select for more copies, that could benefit farmers because we could get stronger resistance. Breeders will now have better tools to select for and verify resistance."
-end-
The research described here is published in two articles. "An efficient method for measuring copy number variation applied to improvement of nematode resistance" is published in The Plant Journal. Lead author Tong Geon Lee is now at the University of Florida. Diers and Hudson, from U of I, are co-authors. "Impact of Rhg1 copy number, type, and interaction with Rhg4 on resistance to Heterodera glycines in soybean" is published in Theoretical and Applied Genetics. Lead author Neil Yu is now at Monsanto, and co-author Daniele Rosa is at the Federal University of Vicosa, Brazil. Lee, Hudson, and Diers are additional co-authors. Both studies were supported by the United Soybean Board.

University of Illinois College of Agricultural, Consumer and Environmental Sciences

Related Genes Articles:

Insomnia genes found
An international team of researchers has found, for the first time, seven risk genes for insomnia.
Genes affecting our communication skills relate to genes for psychiatric disorder
By screening thousands of individuals, an international team led by researchers of the Max Planck Institute for Psycholinguistics, the University of Bristol, the Broad Institute and the iPSYCH consortium has provided new insights into the relationship between genes that confer risk for autism or schizophrenia and genes that influence our ability to communicate during the course of development.
The fate of Neanderthal genes
The Neanderthals disappeared about 30,000 years ago, but little pieces of them live on in the form of DNA sequences scattered through the modern human genome.
Face shape is in the genes
Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a study published on Aug.
Study finds hundreds of genes and genetic codes that regulate genes tied to alcoholism
Using rats carefully bred to either drink large amounts of alcohol or to spurn it, researchers at Indiana and Purdue universities have identified hundreds of genes that appear to play a role in increasing the desire to drink alcohol.
Reading between the genes
For a long time dismissed as 'junk DNA,' we now know that also the regions between the genes fulfill vital functions.
The silence of the genes
Research led by Dr. Keiji Tanimoto from the University of Tsukuba, Japan, has brought us closer to understanding the mechanisms underlying the phenomenon of genomic imprinting.
Why some genes are highly expressed
The DNA in our cells is folded into millions of small packets, like beads on a string, allowing our two-meter linear DNA genomes to fit into a nucleus of only about 0.01 mm in diameter.
Activating genes on demand
A new approach developed by Harvard geneticist George Church, Ph.D., can help uncover how tandem gene circuits dictate life processes, such as the healthy development of tissue or the triggering of a particular disease, and can also be used for directing precision stem cell differentiation for regenerative medicine and growing organ transplants.
Controlling genes with light
Researchers at Duke University have demonstrated a new way to activate genes with light, allowing precisely controlled and targeted genetic studies and applications.

Related Genes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...