What can be discovered at the junction of physics and chemistry?

October 06, 2017

TSU scientist Rashid Valiev and colleagues from the universities of Helsinki and Oslo have discovered a new type of rare molecules whose properties can be controlled by changing the induction of an external magnetic field. These are paramagnetic molecules from the class porphyrins. Porphyrins are part of hemoglobin and chlorophyll and are closely related to the processes of photosynthesis and respiration in living organisms. The results of the study were published in the journal Chemical Communications of the Royal British Chemical Society.

Open paramagnetic porphyrins with a closed electron shell are very rare molecules, because they have a specific electronic structure. Usually, molecules with such a structure are very unstable, and open porphyrins, on the contrary, are unchanged even in the air around us. This makes it possible to manipulate their physicochemical properties with an external magnetic field in various applied fields of magnetooptics and nanotechnology.

Since 2012, a group of scientists, which includes an assistant professor at TSU, has studied the aromatic nature of porphyrins and their derivatives. Aromaticity is a special property of some chemical compounds to exhibit anomalously high stability. That is an important concept in theoretical chemistry and is closely related to the problem of classifying and arranging organic molecules according to their reactivity. However, scientists define it using physics, in particular, they calculate in the molecules magnetically induced currents.

For me, it was always interesting for the physicist to connect our currents and the concept of aromaticity with the spectroscopic or physical properties of molecules,- says Rashid Valiev. - This was done in 2017 for highly antiaromatic porphyrins. Such molecules can be used in magnetooptical problems, where the control of physical properties of molecules is used by changing the induction of an external magnetic field. The fundamental significance of our result is that we explained the nature of the paramagnetism of these molecules.

Using theoretical methods of quantum chemistry, Valiev and his colleagues from the universities of Helsinki and Oslo studied the magnetic properties of seven molecules of isoflorines and carbaporphyrins, both synthesized and hypothetical. They showed that four of the seven molecules considered exhibit paramagnetism, and their spin is zero in the ground electronic state, which is an extremely rare case.
-end-
The Department of Optics and Spectroscopy of the Faculty of Physics and Engineering (head of the department is Victor Cherepanov), whose associate professor is Rashid Valiev, traditionally deals with the modeling of physical and chemical properties of molecules and molecular systems for various applied problems of medicine, astronomy, biology, and chemistry. The Faculty of Physics is part of the StrAU Institute of Smart Materials and Technology (SMTI).

National Research Tomsk State University

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.