Nav: Home

Asymmetric sound absorption lets in the light

October 06, 2017

WASHINGTON, D.C., October 6, 2017 -- If you've ever lived in an apartment building or stayed in a hotel room, you are probably familiar with the inconvenience of inadequate sound absorption. Acoustic absorption refers to the absorption of sound energy by a material. Whether it's to improve acoustics or to prevent noisy neighbors, sound absorption has multiple applications in engineering and architecture, which can be improved by asymmetric acoustics.

Many asymmetric absorbers, those that only absorb sound coming in from one direction, are currently based on a single-port system, where sound enters one side and is absorbed before a rigid wall. In this design, however, light and air are unable to pass through the system. But a combined research effort from Nanjing University and the Chinese Academy of Sciences shows that asymmetric absorption can be realized within a straight transparent waveguide. The waveguide allows light transmission and air flow through the absorber and is described this week in Applied Physics Letters, from AIP Publishing.

Ying Cheng, associate professor of physics at Nanjing University, and his colleagues developed a methodology to induce non-reciprocal absorption and reflectance for both multiband and broadband sound. They discovered that sound was almost completely absorbed, more than 96 percent, when using the multiband absorber in an asymmetric Helmholtz resonance (HR) fashion.

"Therefore, we were curious about whether there are artificial structures with the effect of 'blocking' sound waves which act as the rigid wall, but [are] transparent to light and wind," Cheng said.

Within a tube with both ends open they constructed an asymmetric sound absorber. "[T]he system can almost totally absorb the sound energy impinging on one port, but largely reflects the sound energy entering the other port," he said. "In the system, one of [the] Helmholtz resonators (located on branches to the main tube and acting as shunts) functions as an artificial soft wall which can block sound waves as if they were a rigid solid wall."

Asymmetric absorbers use a more complicated method of absorption than, say, porous metameterials that absorb from both directions. Often, nonlinear effects or highly complex structures are required to break reciprocity and allow reflection from one direction.

Here, however, the clever design of the shunted HR pairs takes advantage of natural loss mechanisms to achieve the effect. These systems could find a number of applications in architectural design, specifically in the design of acoustically isolated rooms where light and air flow is still desired.

"The researchers may [have] found an almost 100 percent absorption of the noise from outside of a room for acoustic isolation as well as high reflection of the sound waves inside the room to enhance the reverberation. And most importantly, the design allows free interchange of air between the outside and the room, which they were unable to do in previous prototypes [with only one end of the tube being open]," Cheng said.

Using the newly developed model, "we may extend asymmetric sound absorption into a two-dimensional planar system by using other types of acoustic resonators to make the asymmetric absorption more widely used," said Cheng.
The article, "Asymmetric absorber with multiband and broadband for low-frequency sound," is authored by Houyou Long, Ying Cheng and Xiaojun Liu. The article appeared in Applied Physics Letters Oct. 3, 2017 (DOI: 10.1063/1.4998516) and can be accessed at


Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See

American Institute of Physics

Related Physics Articles:

Diamonds coupled using quantum physics
Researchers at TU Wien have succeeded in coupling the specific defects in two such diamonds with one another.
The physics of wealth inequality
A Duke engineering professor has proposed an explanation for why the income disparity in America between the rich and poor continues to grow.
Physics can predict wealth inequality
The 2016 election year highlighted the growing problem of wealth inequality and finding ways to help the people who are falling behind.
Physics: Toward a practical nuclear pendulum
Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element.
Flowers use physics to attract pollinators
A new review indicates that flowers may be able to manipulate the laws of physics, by playing with light, using mechanical tricks, and harnessing electrostatic forces to attract pollinators.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
2-D physics
Physicist Andrea Young receives a 2016 Packard Fellowship to pursue his studies of van der Waals heterostructures.
Cats seem to grasp the laws of physics
Cats understand the principle of cause and effect as well as some elements of physics.
Plasma physics' giant leap
For the first time, scientists are looking at real data -- not computer models, but direct observation -- about what is happening in the fascinating region where the Earth's magnetic field breaks and then joins with the interplanetary magnetic field.
Nuclear physics' interdisciplinary progress
The theoretical view of the structure of the atom nucleus is not carved in stone.

Related Physics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".