Watch how cells squeeze through channels

October 06, 2020

Observations of cells moving through small channels shed new light on cell migration in 3D environments, researchers report October 6 in Biophysical Journal. The findings also reveal how cancer cells may penetrate tissues and spread throughout the body.

"Our results describe how cells can migrate and deform through confined spaces, providing potentially new ways to envision cell motility in small blood capillaries in vivo," says senior study author Daniel Riveline of the University of Strasbourg in France.

Cell migration plays a key role in a variety of biological phenomena, ranging from early development to disease processes. But cell motility has mainly been studied on flat surfaces rather than in 3D environments similar to blood vessels and other structures commonly found in the body. To address this gap, Riveline and his collaborators studied cell motion in microfabricated channels that had either open or closed configurations (i.e., confined by three or four walls, respectively). In addition, some channels were straight, whereas others had various bottlenecks to mimic cell blockage in small veins.

As expected, fibroblasts moved freely in straight channels. But in the presence of bottlenecks, the nucleus sometimes prevented cell passage, causing pauses in cell motion. Other times, the cells anchored and pulled locally to deform the nucleus and allow cell passage. Additional results suggested that cells would not be able to change their direction of motion when entering a sufficiently small capillary, and that chemical gradients can induce directional motion.

The researchers also studied the movements of oral squamous epithelial cells, including some with mutant keratin protein implicated in squamous cancers. In normal cells, keratin accumulated at the rear of the nucleus during passage through bottlenecks, potentially to facilitate deformation of the organelle. By contrast, the mutant cells could not pass through bottlenecks, indicating that defects in keratin impair motion in confined spaces, possibly by preventing the nucleus from deforming. The findings also suggest that squamous cancer cells could be blocked within small capillaries, potentially allowing them to penetrate tissues.

"Because initial arrest in the capillary is critical for tumor cells to metastasize to secondary sites in distant organs, blockage by mutant keratin may provide advantages for tumor seeding, survival, and proliferation," Riveline says. "Future studies could take this channel strategy to identify signaling networks that are modified in the context of cancer."
-end-
This study was supported by a French state fund through the Agence Nationale de la Recherche, Region Grand Est, Alsace contre le cancer, the University of Strasbourg, the CNRS, and the Ministry of Science and Technology (MOST)/Taiwan.

Biophysical Journal, Le Maout and Lo Vecchio et al.: "Ratchetaxis in Channels: Entry Point and Local Asymmetry Set Cell Directions in Confinement" https://www.cell.com/biophysj/fulltext/S0006-3495(20)30678-0

The Biophysical Journal (@BiophysJ), published by Cell Press for the Biophysical Society, is a bimonthly journal that publishes original research and reviews on the most important developments in modern biophysics--a broad and rapidly advancing field encompassing the study of biological structures and focusing on mechanisms at the molecular, cellular, and systems levels through the concepts and methods of physics, chemistry, mathematics, engineering, and computational science. Visit: http://www.cell.com/biophysj/home. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.