Multi-institutional team extracts more energy from sunlight with advanced solar panels

October 06, 2020

CHAMPAIGN, Ill. -- Researchers working to maximize solar panel efficiency said layering advanced materials atop traditional silicon is a promising path to eke more energy out of sunlight. A new study shows that by using a precisely controlled fabrication process, researchers can produce multilayered solar panels with the potential to be 1.5 times more efficient than traditional silicon panels.

The results of the study led by University of Illinois Urbana-Champaign engineer Minjoo Larry Lee are published in the journal Cell Reports Physical Sciences.

"Silicon solar panels are prevalent because they are affordable and can convert a little over 20% of the sun's light into usable electricity," said Lee, a professor of electrical and computer engineering and Holonyak Micro and Nanotechnology Lab affiliate. "However, just like silicon computer chips, silicon solar cells are reaching the limit of their abilities, so finding a way to increase efficiency is attractive to energy providers and consumers."

Lee's team has been working to layer the semiconductor material gallium arsenide phosphide onto silicon because the two materials complement each other. Both materials absorb visible light strongly, but gallium arsenide phosphide does so while generating less waste heat. In contrast, silicon excels at converting energy from the infrared part of the solar spectrum just beyond what our eyes can see, Lee said.

"It is like a sports team. You are going to have some fast people, some who are strong and some with great defensive skills," he said. "In a similar way, tandem solar cells work as a team and take advantage of the best properties of both materials to make a single, more efficient device."

While gallium arsenide phosphide and other semiconductor materials like it are efficient and stable, they are expensive, so making panels composed entirely from them is not reasonable for mass production at this time. Hence, Lee's team uses low-cost silicon as a starting point for its research.

During fabrication, material defects find their way into the layers, particularly at interfaces between the silicon and gallium arsenide phosphide, Lee said. Tiny imperfections form whenever materials with different atomic structure are layered onto silicon, compromising both performance and reliability.

"Anytime you switch from one material to another, there is always a risk of creating some disorder in the transition," Lee said. "Shizhao Fan, the lead author of the study, developed a process for forming pristine interfaces in the gallium arsenide phosphide cell, which led to a vast improvement over our earlier work in this area."

"Eventually, a utility company could use this technology to get 1.5 times more energy out of the same amount of land on its solar farms, or a consumer could use 1.5 times less space for rooftop panels," he said.

Lee said obstacles remain on the path to commercialization, but he is hopeful that energy providers and consumers will see the value in using stable materials to achieve a performance boost.
U. of I. researchers Fan, Ryan D. Hool, Pankul Dhingra, Mijung Kim, Erik D. Ratta, Brian D. Li and Yukun Sun; and Arizona State University researchers William Weigand, Zhengshan J. Yu and Zachary C. Holman contributed to this study.

The National Science Foundation and NASA supported this study.

Editor's notes:

To reach Minjoo Larry Lee, call 217-300-4430; email

The paper "Current-matched III-V/Si epitaxial tandem solar cells with 25.0% efficiency" is U. of I. News Bureau. DOI: 10.1016/j.xcrp.2020.100208

University of Illinois at Urbana-Champaign, News Bureau

Related Silicon Articles from Brightsurf:

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

For solar boom, scrap silicon for this promising mineral
Cornell University engineers have found that photovoltaic wafers in solar panels with all-perovskite structures outperform photovoltaic cells made from state-of-the-art crystalline silicon, as well as perovskite-silicon tandem cells, which are stacked pancake-style cells that absorb light better.

Surprisingly strong and deformable silicon
Researchers at ETH have shown that tiny objects can be made from silicon that are much more deformable and stronger than previously thought.

A leap in using silicon for battery anodes
Scientists have come up with a novel way to use silicon as an energy storage ingredient.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

No storm in a teacup -- it's a cyclone on a silicon chip
University of Queensland researchers have combined quantum liquids and silicon-chip technology to study turbulence for the first time, opening the door to new navigation technologies and improved understanding of the turbulent dynamics of cyclones and other extreme weather.

Black silicon can help detect explosives
Scientists from Far Eastern Federal University (FEFU), Far Eastern Branch of the Russian Academy of Sciences, Swinburne University of Technology, and Melbourne Center for Nanofabrication developed an ultrasensitive detector based on black silicon.

2D antimony holds promise for post-silicon electronics
Researchers in the Cockrell School of Engineering are searching for alternative materials to silicon with semiconducting properties that could form the basis for an alternative chip.

Silicon technology boost with graphene and 2D materials
In a review published in Nature, ICFO researchers and collaborators report on the current state, challenges, opportunities of graphene and 2D material integration in Silicon technology.

Light and sound in silicon chips: The slower the better
Acoustics is a missing dimension in silicon chips because acoustics can complete specific tasks that are difficult to do with electronics and optics alone.

Read More: Silicon News and Silicon Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to