Evidence of Alzheimer's, Parkinson's & MND in brains of young people exposed to dirty air

October 06, 2020

Researchers looking at the brainstems of children and young adults exposed lifelong to air pollution in Mexico City have discovered disturbing evidence of harm.

Previous studies have linked fine particulate air pollution exposure with Alzheimer's disease, and researchers have also reported evidence of air pollution-derived nanoparticles in the frontal cortex of the brain.

But after examining the brainstems of 186 young Mexico City residents aged between 11 months and 27 years of age, researchers, including Professor Barbara Maher from Lancaster University, found markers not only of Alzheimer's disease, but also of Parkinson's and of motor neurone disease (MND) too. These markers of disease were coupled with the presence of tiny, distinctive nanoparticles within the brainstem - their appearance and composition indicating they were likely to come from vehicle pollution.

This has led researchers to conclude that air pollution of this nature - whether inhaled or swallowed - puts people at risk of potential neurological harm. The brainstem is the posterior part of the brain which regulates the central nervous system, controls heart and breathing rates, and how we perceive the position and movement of our body, including, for example, our sense of balance.

Professor Maher said: "Not only did the brainstems of the young people in the study show the 'neuropathological hallmarks' of Alzheimer's, Parkinson's and MND, they also had high concentrations of iron-, aluminium- and titanium-rich nanoparticles in the brainstem - specifically in the substantia nigra, and cerebellum.

"The iron-and aluminium-rich nanoparticles found in the brainstem are strikingly similar to those which occur as combustion- and friction-derived particles in air pollution (from engines and braking systems).

"The titanium-rich particles in the brain were different - distinctively needle-like in shape; similar particles were observed in the nerve cells of the gut wall, suggesting these particles reach the brain after being swallowed and moving from the gut into the nerve cells which connect the brainstem with the digestive system."

The 'neuropathological hallmarks' found even in the youngest infant (11 months old) included nerve cell growths, and plaques and tangles formed by misfolded proteins in the brain. Damage to the substantia nigra is directly linked with the development of Parkinson's disease in later life. Protein misfolding linked previously with MND was also evident, suggesting common causal mechanisms and pathways of formation, aggregation and propagation of these abnormal proteins.

The one thing common to all of the young people examined in the study was their exposure to high levels of particulate air pollution. Professor Maher says that the associations between the presence of damage to cells and their individual components - especially the mitochondria (key for generation of energy, and signalling between cells) - and these metal-rich nanoparticles are a 'smoking gun'.

Such metal-rich particles can cause inflammation and also act as catalysts for excess formation of reactive oxygen species, which are known to cause oxidative stress and eventual death of neurons. Critically, the brainstems of age- and gender- matched controls who lived in lower-pollution areas have not shown the neurodegenerative pathology seen in the young Mexico City residents.

These new findings show that pollution-derived, metal-rich nanoparticles can reach the brainstem whether by inhalation or swallowing, and that they are associated with damage to key components of nerve cells in the brainstem, including the substantia nigra.

Even in these young Mexico City residents, the type of neurological damage associated with Alzheimer's, Parkinson's and motor neurone diseases is already evident. These data indicate the potential for a pandemic of neurological disease in high-pollution cities around the world as people experience longer lifespans, and full symptoms of earlier, chronic neurological damage develop.

Professor Barbara Maher said: "It's critical to understand the links between the nanoparticles you're breathing in or swallowing and the impacts those metal-rich particles are then having on the different areas of your brain.

"Different people will have different levels of vulnerability to such particulate exposure but our new findings indicate that what air pollutants you are exposed to, what you are inhaling and swallowing, are really significant in development of neurological damage.

"With this in mind, control of nanoparticulate sources of air pollution becomes critical and urgent."
-end-
Partners on the study which was led by Lilian Calderón-Garcidueña (of The University of Montana and the Universidad del Valle de México) also included:

Angélica González-Maciel and Rafael Reynoso-Robles, Instituto Nacional de Pediatría, Mexico, Barbara A. Maher and Jessica Hammond, Centre for Environmental Magnetism and Paleomagnetism, Lancaster Environment Centre, Lancaster University, UK Randy Kulesz, Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA, Ingolf Lachmann, AJ Roboscreen GmbH, Leipzig, Germany, Ricardo Torres-Jardón, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, UNAM, Mexico City Partha S.Mukherjee, the Indian Statistical Institute, Kolkata, India

To read the article go to https://doi.org/10.1016/j.envres.2020.110139

Lancaster University

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.