Stars stop forming when big galaxies collide

October 07, 2008

New Haven, Conn. -- Astronomers studying new images of a nearby galaxy cluster have found evidence that high-speed collisions between large elliptical galaxies may prevent new stars from forming, according to a paper to be published in a November 2008 issue of The Astrophysical Journal Letters.

Led by Jeffrey Kenney, professor and chair of astronomy at Yale, the team saw a spectacular complex of warm gas filaments 400,000 light-years-long connecting the elliptical galaxy M86 and the spiral galaxy NGC 4438 in the Virgo galaxy cluster, providing striking evidence for a previously unsuspected high-speed collision between the galaxies. The view was constructed using the wide-field Mosaic imager on the National Science Foundation telescope at Kitt Peak National Observatory near Tucson, Arizona.

"Our data show that this system represents the nearest recent collision between a large elliptical galaxy and a large spiral galaxy," said Kenney, who is lead author of the paper. "This discovery provides some of the clearest evidence yet for high-speed collisions between large galaxies, and it suggests a plausible alternative to black holes as an explanation of what turns off star formation in the biggest galaxies."

Previously, scientists had seen the filaments of gas around both galaxies, but had not seen or inferred any connection between the two galaxies located approximately 50 million light-years from Earth. The new image shows extended and faint emissions that directly connect the two galaxies -- and there are no obvious stars in the filaments.

As in most elliptical galaxies, gas within M86 is extremely hot, and radiates X-rays in a long plume, which had previously been interpreted as a tail of gas being stripped as M86 falls into the Virgo cluster. The new image suggests that most of the disturbances in M86 are instead due to the collision with NGC 4438.

"Like with a panoramic camera, the view from the telescope using the wide-field imager at Kitt Peak let us see the bigger picture," said Kenney. "We needed to look deep and wide to see the M86 complex."

A current mystery in astronomy is what causes the biggest galaxies in the universe --primarily elliptical galaxies like M86 -- to stop forming stars. "Something needs to heat up the gas so it doesn't cool and form stars," Kenney says. "Our new study shows that gravitational interactions may do the trick."

According to the authors, low-velocity collisions between small- or medium-sized galaxies often produce an increase in the local star formation rate, but in high-velocity collisions that happen naturally between large galaxies, the energy of the collision can cause the gas to heat up so much that it cannot easily cool and form stars.

"The same physical processes occur in both strong and weak encounters, and by studying the observable effects in extreme cases like M86 we can learn about the role of gravity in the heating of galaxy gas, which appears to be quite significant," Kenney adds.
-end-
Co-authors of the study include Yale graduate student Tomer Tal, former Yale student Hugh Crowl, now at the University of Massachusetts, WIYN Observatory Director George Jacoby, and John Feldmeier of Youngstown State University.

Kitt Peak National Observatory is part of the National Optical Astronomy Observatory (NOAO), which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The founding members of the WIYN Observatory partnership are the University of Wisconsin, Indiana University, Yale University, and NOAO.

Jeffrey Kenney http://www.astro.yale.edu/cgi-bin/dept/people/user.cgi?kenney
astronomy http://www.astro.yale.edu/
National Optical Astronomy Observatory http://www.noao.edu/outreach/press/pr08/pr0807.html

Yale University

Related Star Formation Articles from Brightsurf:

Low-metallicity globular star cluster challenges formation models
On the outskirts of the nearby Andromeda Galaxy, researchers have unexpectedly discovered a globular cluster (GC) - a massive congregation of relic stars - with a very low abundance of chemical elements heavier than hydrogen and helium (known as its metallicity), according to a new study.

Astronomers turn up the heavy metal to shed light on star formation
Astronomers from The University of Western Australia's node of the International Centre for Radio Astronomy Research (ICRAR) have developed a new way to study star formation in galaxies from the dawn of time to today.

New observations of black hole devouring a star reveal rapid disk formation
When a star passes too close to a supermassive black hole, tidal forces tear it apart, producing a bright flare of radiation as material from the star falls into the black hole.

How galaxies die: New insights into the quenching of star formation
Astronomers studying galaxy evolution have long struggled to understand what causes star formation to shut down in massive galaxies.

The cosmic commute towards star and planet formation
Interconnected gas flows reveal how star-forming gas is assembled in galaxies.

Star formation project maps nearby interstellar clouds
Astronomers have captured new, detailed maps of three nearby interstellar gas clouds containing regions of ongoing high-mass star formation.

Scientists discover pulsating remains of a star in an eclipsing double star system
Scientists from the University of Sheffield have discovered a pulsating ancient star in a double star system, which will allow them to access important information on the history of how stars like our Sun evolve and eventually die.

Distant milky way-like galaxies reveal star formation history of the universe
Thousands of galaxies are visible in this radio image of an area in the Southern Sky, made with the MeerKAT telescope.

Cascades of gas around young star indicate early stages of planet formation
What does a gestating baby planet look like? New research in Nature by a team including Carnegie's Jaehan Bae investigated the effects of three planets in the process of forming around a young star, revealing the source of their atmospheres.

Massive exoplanet orbiting tiny star challenges planet formation theory
Astronomers have discovered a giant Jupiter-like exoplanet in an unlikely location -- orbiting a small red dwarf star.

Read More: Star Formation News and Star Formation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.