Nav: Home

Aberrant Tau proteins put neuronal networks to sleep

October 07, 2016

The brain could easily be compared to the internet. In both networks information is transmitted from one unit to the next with numerous units making up the network. Unlike computers, neurons are interconnected by axons, thin biological wires which can be as long as one meter. A protein called Tau normally helps in maintaining axonal integrity by stabilizing the tracks which are necessary to transport cellular components within the axon. However, Tau goes astray in multiple neurodegenerative diseases like Alzheimer's and other "tauopathies". Here it starts to aggregate into tiny fibers or clumps, which can corrupt neuronal function. However, the underlying mechanisms are poorly understood and there is therefore no effective treatment.

Now, researchers at the DZNE and the caesar research center led by Eva-Maria and Eckhard Mandelkow shed new light on the pathological processes that involve Tau proteins. As they report in the Proceedings of the National Academy of Sciences of the USA (PNAS), under pathological conditions, small aggregates of Tau accumulate in the axons. As a result, neuronal activity is attenuated but neurons do not die and do not seem to be seriously ill. The aggregates only let neurons, so to say, doze off. However, the researchers also found a potential antidote: A drug called "Rolofylline". It re-establishes neuronal activity despite of the production of pathological Tau. Rolofylline works by enhancing signal transmission and reception which strengthens the communication between nerve cells. Consequently, Rolofylline alleviates learning and memory deficits in mice that express the aberrant Tau protein, as the scientists have revealed.

Rolofylline was originally devised to treat renal dysfunction in human heart failure patients. The drug binds to a subset of cellular sensors called "adenosine A1 receptors". Thereby, signal pathways are blocked, that otherwise would down-regulate neuronal network activity. Patients with neurodegenerative diseases might benefit from this. "Our results suggest that Rolofylline could potentially be useful to treat neuronal dysfunctions that occur in tauopathies. This makes the drug a hot candidate for further studies. As an analogy, the Tau aggregates resemble a concrete wall in the middle of the room which blocks a WiFi signal. Rolofylline seems to work as a WiFi booster that can re-establish the connection despite of the obstruction", says Frank Dennissen, a member of the Mandelkow Lab and first author of the current paper.
-end-
Original publication

"Adenosine A1 receptor antagonist rolofylline alleviates axonopathy caused by human Tau ΔK280", Frank J. A. Dennissen, Marta Anglada-Huguet, Astrid Sydow, Eckhard Mandelkow and Eva-Maria Mandelkow, PNAS (2016), DOI: 10.1073/pnas.1603119113

Media Relations

Dr. Marcus Neitzert
DZNE, Communications
Phone: +49 228 / 43302-267
marcus.neitzert@dzne.de

The German Center for Neurodegenerative Diseases (DZNE) investigates the causes of diseases of the nervous system and develops strategies for prevention, treatment and care. It is an institution within the Helmholtz Association of German Research Centres with nine sites across Germany (Berlin, Bonn, Dresden, Göttingen, Magdeburg, Munich, Rostock/Greifswald, Tübingen and Witten). The DZNE cooperates closely with universities, their clinics and other research facilities.

Web: http://www.dzne.de/en | Twitter: @dzne_en | Facebook: http://www.dzne.de/facebook

DZNE - German Center for Neurodegenerative Diseases

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...