Nav: Home

Aberrant Tau proteins put neuronal networks to sleep

October 07, 2016

The brain could easily be compared to the internet. In both networks information is transmitted from one unit to the next with numerous units making up the network. Unlike computers, neurons are interconnected by axons, thin biological wires which can be as long as one meter. A protein called Tau normally helps in maintaining axonal integrity by stabilizing the tracks which are necessary to transport cellular components within the axon. However, Tau goes astray in multiple neurodegenerative diseases like Alzheimer's and other "tauopathies". Here it starts to aggregate into tiny fibers or clumps, which can corrupt neuronal function. However, the underlying mechanisms are poorly understood and there is therefore no effective treatment.

Now, researchers at the DZNE and the caesar research center led by Eva-Maria and Eckhard Mandelkow shed new light on the pathological processes that involve Tau proteins. As they report in the Proceedings of the National Academy of Sciences of the USA (PNAS), under pathological conditions, small aggregates of Tau accumulate in the axons. As a result, neuronal activity is attenuated but neurons do not die and do not seem to be seriously ill. The aggregates only let neurons, so to say, doze off. However, the researchers also found a potential antidote: A drug called "Rolofylline". It re-establishes neuronal activity despite of the production of pathological Tau. Rolofylline works by enhancing signal transmission and reception which strengthens the communication between nerve cells. Consequently, Rolofylline alleviates learning and memory deficits in mice that express the aberrant Tau protein, as the scientists have revealed.

Rolofylline was originally devised to treat renal dysfunction in human heart failure patients. The drug binds to a subset of cellular sensors called "adenosine A1 receptors". Thereby, signal pathways are blocked, that otherwise would down-regulate neuronal network activity. Patients with neurodegenerative diseases might benefit from this. "Our results suggest that Rolofylline could potentially be useful to treat neuronal dysfunctions that occur in tauopathies. This makes the drug a hot candidate for further studies. As an analogy, the Tau aggregates resemble a concrete wall in the middle of the room which blocks a WiFi signal. Rolofylline seems to work as a WiFi booster that can re-establish the connection despite of the obstruction", says Frank Dennissen, a member of the Mandelkow Lab and first author of the current paper.
-end-
Original publication

"Adenosine A1 receptor antagonist rolofylline alleviates axonopathy caused by human Tau ΔK280", Frank J. A. Dennissen, Marta Anglada-Huguet, Astrid Sydow, Eckhard Mandelkow and Eva-Maria Mandelkow, PNAS (2016), DOI: 10.1073/pnas.1603119113

Media Relations

Dr. Marcus Neitzert
DZNE, Communications
Phone: +49 228 / 43302-267
marcus.neitzert@dzne.de

The German Center for Neurodegenerative Diseases (DZNE) investigates the causes of diseases of the nervous system and develops strategies for prevention, treatment and care. It is an institution within the Helmholtz Association of German Research Centres with nine sites across Germany (Berlin, Bonn, Dresden, Göttingen, Magdeburg, Munich, Rostock/Greifswald, Tübingen and Witten). The DZNE cooperates closely with universities, their clinics and other research facilities.

Web: http://www.dzne.de/en | Twitter: @dzne_en | Facebook: http://www.dzne.de/facebook

DZNE - German Center for Neurodegenerative Diseases

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".