Nav: Home

MDC researchers discover new regulatory mechanism of important protein

October 07, 2016

Protein kinase A (PKA) is an important signaling enzyme that is found throughout the body and is involved in many cellular processes. It was thought to have been comprehensively studied, but scientists at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) have now discovered a new layer of PKA regulation and published their findings in Nature Communications.

The MDC research team headed by Dr. Oliver Rocks is investigating the mechanisms that control the remodeling of the cell skeleton. During a screen of proteins involved in this process the scientists made an interesting discovery - they noticed that one of the proteins binds the catalytic subunit of the PKA. "We were surprised to find the catalytic subunit of PKA, because normally control of this pathway is through the regulatory subunit," says the researcher.

In the classical model of PKA regulation, the regulatory subunits dock onto the catalytic ones and stop them sending signals. They only release the catalytic subunits when the cell receives a signal that increases the levels of the cellular chemical cAMP. cAMP clips onto the regulatory subunits and force them to set the catalytic subunits free.

In the screen the catalytic subunit of PKA (PKAC) was binding to a protein called ARHGAP36. For her PhD research in Dr. Rocks's lab, Rebecca Eccles investigated how ARHGAP36 interacts with PKAC. She worked with other scientists at the MDC, the Berlin Institute of Health (BIH), as well as partners at the University of Liverpool. Eccles found that ARHGAP36 can turn off PKAC in two ways: by binding to it and blocking its action, and by sending it on the path to one of the cell's degradation centers.

PKA's job in the cell is to pass on signals, which the catalytic subunit does by its kinase action - kinases attach a phosphate molecule to their target proteins (substrates). ARHGAP36 stops PKAC from binding its substrates in much the same way as a key stuck in a lock prevents you opening a door. Because PKA occurs in almost all tissues, the researchers wanted to identify where and when it is inhibited by ARHGAP36. "ARGAP36 is a strong inhibitor, so you wouldn't want it turning off PKA everywhere," Rocks explains. He and his team found that ARHGAP36 is not present in all cells all the time - in fact its expression is quite limited, for example to embryonic muscle cells.

Abnormally high levels of ARHGAP3 are also found in at least one of the four subtypes of medulloblastoma, the most common childhood brain cancer, as well as in neuroblastoma, another frequent cancer of the nervous system in children. The exact biological role of ARHGAP36 is not yet understood, but it may well play a role in muscle development and in tumor progression in some cancers. For example, changes in PKA signaling could influence tumor growth in many types of cancer. Understanding how signaling pathways are controlled may also be useful in drug development since it opens up opportunities for regulating proteins indirectly and thus blocking enzymes that are otherwise hard to manipulate.

Max Delbrück Center for Molecular Medicine in the Helmholtz Association

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".