Nav: Home

Study challenges idea of mandatory water intake

October 07, 2016

A multi-institute study led by Monash University has revealed for the first time the mechanism that regulates fluid intake in the human body and stops us from over-drinking, which can cause potentially fatal water intoxication. The study challenges the popular idea that we should drink eight glasses of water a day for health.

The study showed that a 'swallowing inhibition' is activated by the brain after excess liquid is consumed, helping maintain tightly calibrated volumes of water in the body.

Associate Professor Michael Farrell from the Monash Biomedicine Discovery Institute oversaw the work by University of Melbourne PhD student Pascal Saker as part of a collaboration with several Melbourne institutes.

"If we just do what our body demands us to we'll probably get it right - just drink according to thirst rather than an elaborate schedule," Associate Professor Farrell said.

Building on a previous study, the researchers asked participants to rate the amount of effort required to swallow water under two conditions; following exercise when they were thirsty and later after they were persuaded to drink an excess amount of water.

The results showed a three-fold increase in effort after over-drinking.

"Here for the first time we found effort-full swallowing after drinking excess water which meant they were having to overcome some sort of resistance," Associate Professor Farrell said.

"This was compatible with our notion that the swallowing reflex becomes inhibited once enough water has been drunk."

Associate Professor Farrell, who works in the Monash University Department of Medical Imaging and Radiation Sciences, used functional magnetic resonance imaging (fMRI) to measure activity in various parts of the brain, focusing on the brief period just before swallowing.

The fMRI showed the right prefrontal areas of the brain were much more active when participants were trying to swallow with much effort, suggesting the frontal cortex steps in to override the swallowing inhibition so drinking could occur according to the researchers' instructions.

"There have been cases when athletes in marathons were told to load up with water and died, in certain circumstances, because they slavishly followed these recommendations and drank far in excess of need," he said.

Drinking too much water in the body puts it in danger of water intoxication or hyponatremia, when vital levels of sodium in the blood become abnormally low potentially causing symptoms ranging from lethargy and nausea to convulsions and coma.

Associate Professor Farrell said elderly people, however, often didn't drink enough and should watch their intake of fluids.

The study, 'Overdrinking results in the emergence of swallowing inhibition: an fMRI study' is published online in the journal Proceedings of the National Academy of Sciences in the United States of America. It was carried out in collaboration with the Florey Institute of Neuroscience and Mental Health, University of Melbourne and Baker IDI & Diabetes Heart Institute.
-end-
Committed to making the discoveries that will relieve the future burden of disease, the newly established Monash Biomedicine Discovery Institute at Monash University brings together more than 120 internationally-renowned research teams. Our researchers are supported by world-class technology and infrastructure, and partner with industry, clinicians and researchers internationally to enhance lives through discovery.

Monash University

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".