Nav: Home

UT Southwestern finds protein function that could lead to ways to prevent stroke damage

October 07, 2016

DALLAS - Oct. 6, 2016 - One particular protein is the final executioner of events that result in the death of brain cells during stroke, researchers from UT Southwestern Medical Center and their collaborators report. This finding could ultimately lead to new ways to protect against brain damage.

Researchers discovered that the protein, macrophage migration inhibitory factor (MIF), breaks the cell's DNA, resulting in brain cell death.

"Stroke is a major cause of death and serious long-term disability in the world. The Centers for Disease Control and Prevention (CDC) estimates that annually more than 795,000 U.S. residents have a stroke," said lead author Dr. Yingfei Wang, Assistant Professor of Pathology and of Neurology and Neurotherapeutics at UT Southwestern. The Department of Neurology and Neurotherapeutics is part of UT Southwestern's Peter O'Donnell Jr. Brain Institute, a comprehensive initiative dedicated to better understanding the basic molecular workings of the brain and applying these discoveries to the prevention and treatment of brain diseases and injuries.

The study, which appears online in Science, outlines three possible ways to manipulate MIF to protect brain tissue during a stroke - and possibly in other brain-damaging conditions such as Alzheimer's, Parkinson's, and Huntington's diseases, although this study examined only stroke.

Dr. Wang screened thousands of human proteins to find 160 that could be the culprits behind stroke-induced cell death. Eventually, the researchers were able to narrow the field to just one - MIF, a protein long known for its roles in immunity and inflammation.

"The MIF protein was identified in the 1960s, but the function we found related to DNA damage in the cell's nucleus after stroke is brand new," Dr. Wang said.

The MIF finding is the final piece in a puzzle that collaborating researchers at Johns Hopkins University have been carefully assembling for years to reveal the process by which brain cells die. This work was started in the labs of research partners Dr. Ted Dawson, Director of the Institute for Cell Engineering at the Johns Hopkins University School of Medicine, and Dr. Valina Dawson, Professor of Neurology at Johns Hopkins, where Dr. Wang began her work as a postdoctoral researcher and continued it as a collaboration between UT Southwestern and Johns Hopkins.

Despite their very different causes and symptoms, brain injury, stroke, and Alzheimer's, Parkinson's, and Huntington's diseases have a shared mechanism involving a distinct form of "programmed" brain cell death called parthanatos, researchers said. The name comes from the personification of death in Greek mythology, and PARP, an enzyme involved in the cell death process.

"I can't overemphasize what an important form of cell death it is; it plays a role in almost all forms of cellular injury," said Dr. Dawson, whose research group has spent years delineating each of the links in the parthanatos chain of events and the roles of the proteins involved.

The researchers are working to identify chemical compounds that could block MIF's actions and possibly protect brain cells from damage.
-end-
UT Southwestern authors include: postdoctoral researchers Dr. BongWoo Kim and Dr. Lei Bao and research assistant Jennifer Wang, all of Pathology at the time of the study. Dr. Kim is now in Physiology. The collaboration involved researchers from Johns Hopkins, Fudan University and Sun Yat-sen University in China, and the University of Alabama at Birmingham.

This research was supported by the National Institutes of Health, the National Institute of Neurological Disorders and Stroke, the American Heart Association, UT Southwestern Department of Pathology, a UT System Rising STARs award, and a grant from the National Institute on Drug Abuse.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. The faculty of almost 2,800 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in about 80 specialties to more than 100,000 hospitalized patients and oversee approximately 2.2 million outpatient visits a year.

UT Southwestern Medical Center

Related Stroke Articles:

Retraining the brain to see after stroke
A new study out today in Neurology, provides the first evidence that rigorous visual training restores rudimentary sight in patients who went partially blind after suffering a stroke, while patients who did not train continued to get progressively worse.
Catheter ablations reduce risks of stroke in heart patients with stroke history, study finds
Atrial fibrillation patients with a prior history of stroke who undergo catheter ablation to treat the abnormal heart rhythm lower their long-term risk of a recurrent stroke by 50 percent, according to new research from the Intermountain Medical Center Heart Institute.
Imaging stroke risk in 4-D
A new MRI technique developed at Northwestern University detects blood flow velocity to identify who is most at risk for stroke, so they can be treated accordingly.
Biomarkers may help better predict who will have a stroke
People with high levels of four biomarkers in the blood may be more likely to develop a stroke than people with low levels of the biomarkers, according to a study published in the Aug.
Pre-stroke risk factors influence long-term future stroke, dementia risk
If you had heart disease risk factors, such as high blood pressure, before your first stoke, your risk of suffering subsequent strokes and dementia long after your initial stroke may be higher.
Intervention methods of stroke need to focus on prevention for blacks to reduce stroke mortality
Blacks are four times more likely than their white counterparts to die from stroke at age 45.
Study shows area undamaged by stroke remains so, regardless of time stroke is left untreated
A study led by Achala Vagal, M.D., associate professor at the University of Cincinnati College of Medicine and a UC Health radiologist, looked at a group of untreated acute stroke patients and found that there was no evidence of time dependence on damage outcomes for the penumbra, or tissue that is at risk of progressing to dead tissue but is still salvageable if blood flow is returned in a stroke, but rather an association with collateral flow -- or rerouting of blood through clear vessels.
Immediate aspirin after mini-stroke substantially reduces risk of major stroke
Using aspirin urgently could substantially reduce the risk of major strokes in patients who have minor 'warning' events.
SAGE launches the European Stroke Journal with the European Stroke Organisation
SAGE, a world leading independent and academic publisher, is delighted to announce the launch of the European Stroke Journal, the flagship journal of the European Stroke Organisation.
The S-stroke or I-stroke?
The year 2016 is an Olympic year. Developments in high-performance swimwear for swimming continue to advance, along with other areas of scientific research.

Related Stroke Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".