Modified quantum dots capture more energy from light and lose less to heat

October 07, 2019

LOS ALAMOS, N.M., October 7, 2019-- Los Alamos National Laboratory scientists have synthesized magnetically-doped quantum dots that capture the kinetic energy of electrons created by ultraviolet light before it's wasted as heat.

"This discovery can potentially enable novel, highly-efficient solar cells, light detectors, photocathodes and light-driven chemical reactions," said Victor Klimov, lead researcher on the Laboratory's quantum dot project.

In standard solar cells, a large amount of sunlight energy is wasted as heat. This waste occurs due to the lack of effective approaches for capturing kinetic energy of 'hot' electrons generated by photons in the green to ultraviolet portion of the sun's light spectrum. The problem is that hot electrons lose their energy very quickly due to interactions with crystal lattice that the devices are made of, leading to vibrations known as phonons. This process typically occurs in a few picoseconds (trillionths of a second).

Previous efforts to capture hot-carrier energy have exploited the transfer of kinetic energy from the energetic hot electron to an immobile, low-energy electron exciting it to a current-conducting state. This effect, known as carrier multiplication, doubles the number of electrons contributing to the photocurrent which can be used for boosting the performance of solar cells. In most conventional materials, however, the energy losses to phonons outpace the energy gains of carrier multiplication.

In their study published today in Nature Nanotechnology, researchers demonstrate that incorporating magnetic ions into quantum dots can greatly enhance useful, energy-producing interactions so as they become faster than wasteful phonon scattering.

To implement these ideas, the researchers prepared manganese-doped quantum dots based on cadmium selenide. "The photon absorbed by the cadmium selenide quantum dot creates an electron-hole pair, or an exciton," said Klimov."This exciton is quickly trapped by the dopant creating an excited state that stores energy much like a compressed spring. When the second photon is absorbed by the quantum dot, the stored energy is released and transferred to the newly created exciton promoting it to a higher-energy state. The energy release by the manganese ion is accompanied by the flip of its magnetic moment, known as spin. Hence this process is termed spin-exchange Auger energy transfer."

An intriguing observation of LANL scientists was the extremely short time scale of the spin-exchange Auger interactions - around one tenth of a picosecond. To their surprise, these interactions were quicker than phonon emissions, which were generally believed to be the fastest process in semiconductor materials. To prove that the new effect could beat phonon-assisted cooling, Los Alamos researchers demonstrated that properly designed magnetically doped quantum dots allowed them to extract a hot electron created by an ultraviolet photon before it loses its energy to heating the crystal lattice.

These paradigm-shifting findings open exciting opportunities for exploiting spin-exchange Auger processes in advanced schemes for boosting the performance of solar cells or driving unusual photochemical reactions. Interesting opportunities are also envisioned in areas of high-sensitivity, high-speed light detection and new types of light-driven electron sources.
Publication: Hot-Electron Dynamics in Quantum Dots Manipulated by Spin-Exchange Auger Interactions, Nature Nanomaterials, DOI- For Klimov's paper:

Funding: This work was supported by the Solar Photochemistry Program of the Chemical Sciences, Biosciences and Geosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Triad, a public service oriented, national security science organization equally owned by its three founding members: Battelle Memorial Institute (Battelle), the Texas A&M University System (TAMUS), and the Regents of the University of California (UC) for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

DOE/Los Alamos National Laboratory

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to