Stanford scientists pinpoint key proteins in blood stem cell replication

October 08, 2008

STANFORD, Calif. - A family of cancer-fighting molecules helps blood stem cells in mice decide when and how to divide, say researchers at the Stanford University School of Medicine. Blocking the molecules' function spurs the normally resting cells to begin proliferating strangely - making too much of one kind of cell and not enough of another. Many types of human blood cancers involve a similar disruption in the expression of that same family of molecules.

The blood stem cells' misguided enthusiasm also inhibits their ability to successfully repopulate the immune system of a recipient animal after a bone marrow transplant - a common leukemia treatment.

The discovery is the first to directly link the notorious members of the retinoblastoma family of proteins to the cellular production factories responsible for churning out all the blood and immune cells in the body. "This is an important step in understanding the initiation of human cancer at a cellular level," said Patrick Viatour, PhD, a postdoctoral scholar who performed the research in the laboratory of Julien Sage, PhD.

Sage, assistant professor of pediatrics and of genetics, recently received a SEED grant from the California Institute of Regenerative Medicine to investigate how the retinoblastoma, or Rb, proteins affect human embryonic stem cells. Viatour is the first author of the research, which will be published in the Oct. 9 issue of Cell Stem Cell.

"These studies, and additional experiments from our lab in other tissues and organs, indicate that Rb proteins play a critical role in suppressing tumors originating in adult stem cells populations," said Sage, who is also a member of the Stanford Cancer Center.

The first retinoblastoma protein, pRb, was identified through studies of retinal cancer arising in children in whom the protein is missing or mutated. Since that time, Rb proteins have been shown to be involved in preventing many different types of human cancers. Further study showed that pRb stops a cell from dividing before it has appropriately duplicated and segregated its genetic material - coordinating the complex series of events like a traffic light at a busy intersection.

The protein doesn't work alone, however. Two other family members, p107 and p130, also help carry out the important duties. Their ability to fill in for one another makes it difficult to parse out exactly what the proteins are doing at a molecular level. Unfortunately, laboratory animals missing just one or two family members die soon after birth.

Viatour and Sage devised a way to inhibit, or knock out, the function of all three proteins in adult mice. They genetically engineered animals in which the p107 gene is deleted and the pRb and p130 genes are flanked by pieces of DNA that are recognized and cleaved by a specialized protein called the Cre recombinase. When expressed in blood stem cells, the recombinase snips out the Rb and p130 genes, leaving these stem cells and their progeny - that is, the entire blood system-without any functional Rb family members.

The researchers found that blood, or hematopoetic, stem cells in the mice, which usually hang around quietly waiting to be called into action, began actively proliferating when Rb family members were missing. And while unmodified blood stem cells give rise to two main groups of cells - myeloid and lymphoid - the cells missing the Rb family strongly favored the myeloid lineage.

"The differentiation of these hematopoetic stem cells is clearly defective," said Viatour, who also collaborated with bioinformatician and pediatrician Atul Butte, MD, PhD, and many other Stanford researchers on the work. Butte, an assistant professor of medicine and pediatrics, helped the researchers investigate the gene expression profiles of the blood stem cells. "We found that key myeloid genes were upregulated in the cells, and that lymphoid-associated genes were downregulated," said Viatour. In contrast, the ability of the stem cells to make more of themselves seems unimpaired.

Finally, in an experiment mimicking human bone marrow transplantation, hematopoetic stem cells from the mice missing the Rb family members were no longer able to repopulate the immune systems of animals that had received a lethal dose of radiation.

"It's been known that resting, or quiescent, stem cells are much more likely to be successful candidates for transplantation in both humans and mice than are actively dividing cells," said Viatour. "We now have a good model for understanding why that is."

Viatour and his collaborators plan to continue investigating how the Rb family members affect hematopoetic stem cells. One challenge will be to develop an organ-specific way to knock out Rb family function. They'd also like to find out why differentiated myeloid cells don't also proliferate inappropriately, since they too are missing Rb family members.
-end-
Other Stanford co-authors include postdoctoral scholars Tim Somervaille, MD, PhD, and Shivkumar Venkatasubrahmanyam, PhD; and the director of Stanford's Stem Cell Biology and Regenerative Medicine Institute, Irving Weissman, MD. Emmanuelle Passegue, PhD, was a postdoctoral scholar in Weissman's lab when the work was conducted; she is now an assistant professor of medicine at UC-San Francisco.

The research was supported by the National Institutes of Health, the Lucile Packard Foundation for Children's Health, the Damon Runyon Cancer Foundation, the California Institute for Regenerative Medicine, the Human Frontier Science Program, the European Molecular Biology Organization, the Fonds de la Recherche Scientifique, the Leon Fredericq Foundation and the Leukemia and Lymphoma Society.Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children's Hospital at Stanford. For more information, please visit the Web site of the medical center's Office of Communication & Public Affairs at http://mednews.stanford.edu.

Stanford University Medical Center

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.