RNA molecules, delivery system improve vaccine responses, effectiveness

October 08, 2008

AUSTIN, Texas - A novel delivery system that could lead to more efficient and more disease-specific vaccines against infectious diseases has been developed by biomedical engineers at The University of Texas at Austin.

The findings use specific ribonucleic acid (RNA) molecules to significantly bolster a vaccine's effectiveness while tailoring it based on the type of immune response that is most desirable for a particular disease, says Krishnendu Roy, associate professor of biomedical engineering and lead investigator on the study.

Roy and his team, which included his graduate student Ankur Singh and collaborators at M.D. Anderson Cancer Center in Houston, achieved their results during a two-year study primarily working with a DNA-based hepatitis B vaccine. Their work was recently published in Molecular Therapy, the official journal of the American Society of Gene Therapy.

In their studies using mice, immune responses were five to 50 times stronger than with traditional vaccine delivery. The stronger the immune response to a vaccine, the better protection the vaccinated person should have.

Their research uses a novel polymer-based delivery system that consists of micron-sized particles carrying both the vaccine and the RNA to immune cells.

"What we've achieved is a delivery system that provides DNA-based vaccines along with RNA which allows us to significantly enhance the immune response and drive them into a certain direction that is effective against the disease," Roy says.

The team worked with what are called "silencing RNA," which shut down specific proteins in the body.

"By silencing certain proteins in the cells that process your vaccine, we can direct the immune response one way or the other," says Roy, who holds the General Dynamics Endowed Faculty Fellowship.

Physicians want to tailor the immune response because, Singh says, vaccines for parasitic infections may need more of an antibody response, while vaccines for viral infections need more of a cellular response, one that kills the infected cells.

The team's delivery system would work for a wide range of diseases, making it a broad platform for infectious disease vaccines, Roy says.

Roy says mice studies will continue for the next four to five years. If the tests continue to prove successful, testing could begin on primates and eventually humans within six to 10 years.

"Eventually, we want to try it with (vaccines for) cancer and other auto-immune diseases," Singh says.
-end-
Other collaborators include research fellow Hui Nie and graduate student Bilal Ghosn of the university, and Hong Qin and Dr. Larry W. Kwak of M.D. Anderson Cancer Center.

Funding was provided by the National Institute for Allergy and Infectious Diseases and the Coulter Foundation.

For photos of Roy and Singh, go to: www.engr.utexas.edu/news/articles/200810071575/index.cfm.

University of Texas at Austin

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.