Nav: Home

Genetic variation is key to fighting viruses

October 08, 2015

Using a genome-wide association study, EPFL scientists have identified subtle genetic changes that can cause substantial differences to how we fight viral infections.

When infected with a virus, the response of our immune systems varies widely from person to person. This variation is of great concern, as these differences can determine clinical outcome as well as effectiveness of vaccinations. Comparing the genomes of over 2000 people, scientists from EPFL and the Max Plank Institute have pinpointed a genetic link behind immune variations. Published in the American Journal of Human Genetics, the work connects genetics to antiviral immunity while offering a new path for studying this relationship in other medical contexts.

Studying genomes to spot correlations

The mapping of the human genome - the complete set of DNA of a single person - in 2001 opened up an immensely complex network of genetic information. Biologists today have tools that can study whole genomes instead of individual genes, which has proven very useful when trying to identify which gene or genes are behind complex biological functions, such as immunity.

One of these tools is called a "genome-wide association study". In these studies, computers are used to rapidly scan the genomes of many people to find patterns of genetic variations associated with a particular biological function or a disease.

Genomes, viruses and the immune system

The lab of Jacques Fellay at EPFL performed a genome-wide association study on over 2000 people to uncover the genetic elements that underlie the immune response to viruses. The study, led by postdoc Christian Hammer, looked at fourteen common viruses against which antibodies are developed following natural infection or vaccination. Each one of the people tested had developed varying degrees of immunity against each virus, which can be assessed by measuring the presence and concentration of a particular antibody in their blood.

Using this information, the EPFL scientists also looked at the genetic data from each patient to identify correlations of about 6 million common variants across the whole genome with the degree of immune response to each virus. This complex analysis generated masses of digital data, which had to be processed in specialized computer systems at the Vital-IT Group facilities in Lausanne.

Of the fourteen viruses, the study found "hits" on four: influenza A virus, Epstein-Barr virus, JC polyomavirus, and Merkel cell polyomavirus. There seemed to be a strong connection between immune responses to these and genetic variations across a cluster of genes that are known to be involved with the immune response to viruses.

Specifically, these genes - all located on the same chromosome - produce a group of proteins whose job is to attach to viruses and expose specific parts of them to our immune cells, which fight the virus in response. The genetic variations on the genes directly affect the structure of the proteins, and finally impact their ability to present the virus properly and trigger an immune response.

Interestingly, the study also found that the same genetic variant can affect immune responses differently depending on the virus. For example, a variation can decrease immunity against influenza A but increase it for Epstein-Barr virus. The same variants are already known to also play a role in autoimmune diseases that could be modulated by viruses.

But the scientists emphasize that while the study shows correlations, it does not imply causation, which has to be investigated in the future. Nonetheless, the work opens a novel way for exploring, understanding and perhaps even boosting immunity with treatments guided by genomic information.
-end-
This work was funded by the Max Planck Society and the Swiss National Science Foundation.

Reference

Hammer C, Begemann M, McLaren PJ, Bartha I, Michel A, Klose B, Schmitt C, Waterboer T, Pawlita M, Schulz TF, Ehrenreich H, Fellay J. Amino Acid Variation in HLA Class II Proteins Is a Major Determinant of Humoral Response to Common Viruses. American Journal of Human Genetics 05 November 2015. DOI: 10.1016/j.ajhg.2015.09.008

Ecole Polytechnique Fédérale de Lausanne

Related Immune Response Articles:

Discovering the early age immune response in foals
Researchers at the Cornell University College of Veterinary Medicine have discovered a new method to measure tiny amounts of antibodies in foals, a finding described in the May 16 issue of PLOS ONE.
Nixing the cells that nix immune response against cancer
For first time, study characterizes uptick of myeloid-derived suppressor cells in the spleens of human cancer patients, paving the way for therapies directed against these cells that collude with cancer.
Jumbled chromosomes may dampen the immune response to tumors
How well a tumor responds to immunotherapy may depend in part on whether its chromosomes are intact or in a state of disarray, a new study reports.
Tailored organoid may help unravel immune response mystery
Cornell and Weill Cornell Medicine researchers report on the use of biomaterials-based organoids in an attempt to reproduce immune-system events and gain a better understanding of B cells.
Tweaking the immune response might be a key to combat neurodegeneration
Patients with Alzheimer's or other neurodegenerative diseases progressively loose neurons yet cannot build new ones.
Estrogen signaling impacted immune response in cancer
New research from The Wistar Institute showed that estrogen signaling was responsible for immunosuppressive effects in the tumor microenvironment across cancer types.
No platelets, no immune response
When a virus attacks our organism, an inflammation appears on the affected area.
Malaria: A genetically attenuated parasite induces an immune response
With nearly 3.2 billion people currently at risk of contracting malaria, scientists from the Institut Pasteur, the CNRS and Inserm have experimentally developed a live, genetically attenuated vaccine for Plasmodium, the parasite responsible for the disease.
New finding will help target MS immune response
Researchers have made another important step in the progress towards being able to block the development of multiple sclerosis and other autoimmune diseases.
Flu infection reveals many paths to immune response
A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological pathways.

Related Immune Response Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".