Nav: Home

A new measure for wireless power transfer

October 08, 2015

Wireless power transfer has many promising applications, such as contactless powering, electric vehicles, and energy harvesting. To construct a wireless power-transfer system, a "wireless transfer coupler" is necessary to deliver the energy from a high-frequency power source to a load, with no physical contact.

In the past, "coupling coefficient k" was used as an index of wireless-power-transfer efficiency. Since k decreased as the power-transfer distance increased, it was believed that the transmission efficiency would decline. In 2007, however, it was found that the transfer potential could increase, even over large distances, if the Q factor (quality factor) was high.

Now, Professor Takashi Ohira, Director of the Research Center for Future Vehicle City at Toyohashi University of Technology, in cooperation with the Anritsu Corporation, has made it possible to measure the kQ product in real-time, based on Ohira's kQ theory. This software is installed in the ShockLine-series Vector Network Analyzers, models MS461xxA, MS463xxA, and MS465xxB.

"A function to simultaneously estimate and display the ηmax (maximum efficiency, see Reference 3) of a wireless transfer link from the kQ product using tan θ (the efficiency tangent) has also been realized," explains Professor Ohira. "Using this newly developed measurement system, it is possible to greatly improve prototypes and design high-efficiency couplers for wireless power transfers."

This system contributes to the construction of highly efficient wireless power-transfer systems by enabling the following.
  • Finding the maximum transmission efficiency by changing (scanning) the power transmission and reception positions.

  • Improving development speeds through the quick discovery of structures and dimensions.

  • Rapidly discovering the dependency of the optimum transmission frequency on structural parameters.

This newly developed "kQ measurement system" will accelerate the realization of various wireless power-transfer applications in our everyday lives; for example, contactless powering of home applications, battery-free electric vehicles, and energy harvesting.
-end-
This system is introduced at CEATEC JAPAN 2015 (Combined Exhibition of Advanced Technologies; Japan's largest IT and electronics exhibition), in Makuhari, Japan, October 7-10, 2015.

Further technical notes: http://www.tut.ac.jp/english/introduction/docs/pr20151008_ohira.pdf

References:

[1]Anritsu Corporation, "Measurement instrumentation," Key Technologies Stage 5K49, CEATEC JAPAN 2015, Makuhari, Japan, October 7-10, 2015.

[2] Takashi Ohira, "Maximum available efficiency formulation based on a black-box model of linear two-port power transfer systems," IEICE Electronics Express, vol. 11, no. 13, pp. 1-6, June 2014.

[3] Takashi Ohira, "Angular expression of maximum power transfer efficiency in reciprocal two-port systems," IEEE Wireless Power Transfer Conference, pp. 228-230, Jeju, Korea, May 2014.

Funding:

SCOPE (Strategic Information and Communications R&D Promotion Programme) Project #01590001 of the Ministry of Internal Affairs and Communications.

Further information

Toyohashi University of Technology

1-1 Hibarigaoka, Tempaku

Toyohashi, Aichi Prefecture, 441-8580, JAPAN

Inquiries: Committee for Public Relations

E-mail: press@office.tut.ac.jp

Toyohashi University of Technology, which was founded in 1976 as a National University of Japan, is a leading research institute in the fields of mechanical engineering, advanced electronics, information sciences, life sciences, and architecture.

Website: http://www.tut.ac.jp/english/

Toyohashi University of Technology

Related Electric Vehicles Articles:

Clean energy stored in electric vehicles to power buildings
Stored energy from electric vehicles (EVs) can be used to power large buildings -- creating new possibilities for the future of smart, renewable energy -- thanks to ground-breaking battery research from WMG at the University of Warwick.
Wireless charging of moving electric vehicles overcomes major hurdle in new Stanford study
Stanford scientists have developed a way to wirelessly deliver electricity to moving objects, technology that could one day charge electric vehicles and personal devices like medical implants and cell phones.
New battery coating could improve smart phones and electric vehicles
High performing lithium-ion batteries are a key component of laptops, smart phones, and electric vehicles.
Renewable energy needed to drive uptake of electric vehicles
Plugging into renewable energy sources outweighs the cost and short driving ranges for consumers intending to buy electric vehicles, according to a new study.
Experience with vehicles does not help birds avoid collisions
Researchers suspected that experience with passing vehicles may cause birds to adjust their avoidance responses -- specifically, to increase their flight initiation distances -- to keep from being hit.
More Electric Vehicles News and Electric Vehicles Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...