Nav: Home

Chinese scientists unravel weapons of defense against 'cotton cancer'

October 08, 2016

As world's largest cotton producer, China yields six to eight million tons cotton (30% of total world production) every year. However, high quality cotton cultivars are vulnerable to Verticillium wilt disease. Due to their long-term survival and vascular colonization of pathogen, the disease cannot be controlled by fungicides. How V. dahliae infects cotton was largely unknown and very limited resistance genes can be used for cotton breeding.

A group of Chinese scientists led by Prof. GUO Huishan from Institute of Microbiology of Chinese Academy of Sciences discovered that trans-kingdom small RNAs (sRNAs) can be used to protect crops from infection of fungal pathogens. This RNAi-based mechanism has been successfully manipulated to protect cotton from infection of a soil-borne fungal pathogen Verticillium dahlia (V. dahliae), the causal agent of vascular wilt disease so-called "Cotton Cancer" in China. This study has been published online in Nature Plants.

GUO's focus on the research of cotton-V. dahliae's infection process can be traced back to her visit in 2008 to Xinjiang in Northwest China, where she was astonished by the scene of huge area of infected cottons and desperate farmers. She began to try to search for a novel strategy to target V. dahliae.

Eight years of laboratory experiment and field research have brought GUO's team consecutive achievements in understanding Verticillium wilt disease.

The team finds that trans-kingdom sRNAs exist during cotton-V. dahliae interactions, and some target virulence genes of pathogens. A novel penetration structure "hyphopodium" helps V. dahliae to "break" plant cell, which determines successful fungal infection (http://dx.doi.org/10.1371/journal.ppat.1005793). Most importantly, cotton cultivars expressing specific sRNAs are resistant to Verticillium wilt disease (http://dx.doi.org/10.1016/j.molp.2016.02.008).

Taking advantage of RNA and genome sequencing, the team found that cotton sRNAs exist in V. dahliae hyphae retrieved from infected cotton, which means sRNAs naturally transmit from host to pathogens during cotton-V. dahliae interaction.

They also demonstrated that some transmitted sRNAs target fungal genes were involved in pathogenicity and efficiently degraded gene transcripts. This phenomenon gave confidence to GUO that cotton would gain disease resistance by stably expressing sRNAs that target V. dahliae virulence genes.

"It was really time-consuming to generate the cottons stably expressing specific sRNAs, but we obtained them finally," said GUO. Their research proved to be successful both in the lab and in the field. sRNA expressing cottons showed 22.25% more disease resistance compared to the other cotton cultivars in the same cotton production base. The new generated cottons show resistance to wilt disease, especially in the field where the fungal populations are diverse.

More efficient fungal targets need to be found based on the established systems, which can also be guidelines for other un-controlled crop diseases in the future.
-end-
This work was supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences and the China Transgenic Research and Commercialization Key Special Project.

Chinese Academy of Sciences Headquarters

Related Pathogens Articles:

Inexpensive, portable detector identifies pathogens in minutes
Most viral test kits rely on labor- and time-intensive laboratory preparation and analysis techniques; for example, tests for the novel coronavirus can take days to detect the virus from nasal swabs.
Outsmarting pathogens
A new influenza strain appears each flu season, rendering past vaccines ineffective.
Autonomous microtrap for pathogens
Antibiotics are more efficient when they can act on their target directly at the site of infestation, without dilution.
Acidic environment could boost power of harmful pathogens
New findings published in PLOS Pathogens suggest lower pH in the digestive tract may make some bacterial pathogens even more dangerous.
On the trail of pathogens in meat, eggs and raw milk
To make food even safer for humans, experts from scientific institutions, food regulatory authorities and the business community will discuss current developments and strategies at the 'Zoonoses and Food Safety' Symposium at the German Federal Institute for Risk Assessment (BfR) on 4 and 5 November 2019, in Berlin-Marienfelde.
Protozoans and pathogens make for an infectious mix
The new observation that strains of V. cholerae can be expelled into the environment after being ingested by protozoa, and that these bacteria are then primed for colonisation and infection in humans, could help explain why cholera is so persistent in aquatic environments.
Your energy-efficient washing machine could be harboring pathogens
For the first time ever, investigators have identified a washing machine as a reservoir of multidrug-resistant pathogens.
Picky pathogens help non-native tree species invade
Trees have many natural enemies, including pathogens that have evolved to attack certain tree species.
How plague pathogens trick the immune system
Yersinia have spread fear and terror, especially in the past, but today they have still not been completely eradicated.
Metabolomic profiling of antibody response to periodontal pathogens
At the 97th General Session & Exhibition of the International Association for Dental Research (IADR), held in conjunction with the 48th Annual Meeting of the American Association for Dental Research (AADR) and the 43rd Annual Meeting of the Canadian Association for Dental Research (CADR), Jaakko Leskela, University of Helsinki, Finland, gave an oral presentation on 'Metabolomic Profiling of Antibody Response to Periodontal Pathogens.'
More Pathogens News and Pathogens Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.