Copper ions flow like liquid through crystalline structures

October 08, 2018

DURHAM, N.C. -- Materials scientists have sussed out the physical phenomenon underlying the promising electrical properties of a class of materials called superionic crystals. A better understanding of such materials could lead to safer and more efficient rechargeable batteries than the current standard-bearer of lithium ion.

Becoming a popular topic of study only within the past five years, superionic crystals are a cross between a liquid and a solid. While some of their molecular components retain a rigid crystalline structure, others become liquid-like above a certain temperature, and are able to flow through the solid scaffold.

In a new study, scientists from Duke University, Oak Ridge National Laboratory (ORNL) and Argonne National Laboratory (ANL) probed one such superionic crystal containing copper, chromium and selenium (CuCrSe2) with neutrons and X-rays to determine how the material's copper ions achieve their liquid-like properties. The results appear online on Oct. 8 in the journal Nature Physics.

"When CuCrSe2 is heated above 190 degrees Fahrenheit, its copper ions fly around inside the layers of chromium and selenium about as fast as liquid water molecules move," said Olivier Delaire, associate professor of mechanical engineering and materials science at Duke and senior author on the study. "And yet, it's still a solid that you could hold in your hand. We wanted to understand the molecular physics behind this phenomenon."

To probe the copper ions' behavior, Delaire and his colleagues turned to two world-class facilities: the Spallation Neutron Source at Oak Ridge and the Advanced Photon Source at Argonne. Each machine provided a unique piece of the puzzle.

By pinging a large sample of powdered CuCrSe2 made at Oak Ridge with powerful neutrons, the researchers got a wide-scale view of the material's atomic structure and dynamics, revealing both the vibrations of the stiff scaffold of chromium and selenium atoms as well as the random jumps of copper ions within.

For a narrower but more detailed look at vibration modes, the researchers bombarded a tiny single grain of CuCrSe2 crystal with high-resolution X-rays. This allowed them to examine how the rays scattered off of its atoms and how scaffold vibrations enabled shear waves to propagate, a hallmark of solid behavior.

With both sets of information in hand, Delaire's group ran quantum simulations of the material's atomic behavior at the National Energy Research Scientific Computing Center to explain their findings. Below the phase transition temperature of 190 degrees Fahrenheit, the copper atoms vibrate around isolated sites, trapped in pockets of the material's scaffold structure. But above that temperature, they are able to hop randomly between multiple available sites. This allows the copper ions to flow throughout the otherwise solid crystal.

While more work is needed to understand how the copper atoms interact with one another once both sites become occupied, the findings offer clues as to how to use similar materials in future electronic applications.

"Most commercial lithium ion batteries use a liquid electrolyte to transfer ions between the positive and negative terminals of the battery," Delaire said. "While efficient, this liquid can be dangerously flammable, as many laptop and smartphone owners have unfortunately discovered."

"There are variants of superionic crystals that contain ions like lithium or sodium that behave like the copper in CuCrSe2," Delaire said. "If we can understand how superionic crystals work through this study and future research, we could perhaps find a better, solid solution for transporting ions in rechargeable batteries."
This research was supported by the Department of Energy (DE-SC0016166, DE-SC0001299, DE-AC02-06CH11357, DE-AC02-05CH11231, DEAC05-00OR22725).

CITATION: "Selective Breakdown of Phonon Quasiparticles across Superionic Transition in CuCrSe2." J. L. Niedziela, Dipanshu Bansal, Andrew F. May, Jingxuan Ding, Tyson Lanigan-Atkins, Georg Ehlers, Douglas L. Abernathy, Ayman Said, & Olivier Delaire. Nature Physics, 2018. DOI: 10.1038/s41567-018-0298-2

Duke University

Related Selenium Articles from Brightsurf:

Easy to overdose on paracetamol if you're selenium deficient, says research
A lack of the mineral selenium in the diet puts people at risk of paracetamol overdose, even when the painkiller is taken at levels claimed to be safe on the packaging, according to collaborative research emerging from the University of Bath and Southwest University in China.

Link identified between dietary selenium and outcome of COVID-19 disease
An international team of researchers, led by Professor Margaret Rayman at the University of Surrey, has identified a link between the COVID-19 cure rate and regional selenium status in China.

Stream pollution from mountaintop mining doesn't stay put in the water
Since the 1980s, a mountaintop mine in West Virginia has been leaching selenium into nearby streams at levels deemed unsafe for aquatic life.

Spinal deformities in Sacramento-San Joaquin delta fish linked to toxic mineral selenium
Native fish discovered with spinal deformities in California's Sacramento-San Joaquin Delta in 2011 were exposed to high levels of selenium from their parents and food they ate as juveniles in the San Joaquin River, new research has found.

Agricultural area residents in danger of inhaling toxic aerosols
Excess selenium from fertilizers and other natural sources can create air pollution that could lead to lung cancer, asthma, and Type 2 diabetes, according to new UC Riverside research.

It's a small (coal-polluted) world, after all
A study published in Environmental Toxicology and Chemistry underscores that the release of pollutants in one region can have implications beyond its borders; emphasizing the dire need for global collaboration on environmental issues.

Russian scientists studied the effect of selenium on the properties of basil
Today many agricultural plants are grown using hydroponics, i.e. in artificial soilless environments.

Turning to old remedies for new health challenges
The last thing anyone wants during a stay in the hospital is a hospital-acquired infection.

Selenium anchors could improve durability of platinum fuel cell catalysts
Researchers at the Georgia Institute of Technology have developed a new platinum-based catalytic system that is far more durable than traditional commercial systems and has a potentially longer lifespan.

Researchers gain key insight into solar material's soaring efficiency
In collaboration with partners at Loughborough University in the United Kingdom, researchers at CSU's National Science Foundation-supported Next Generation Photovoltaics Center have reported a key breakthrough in how the performance of cadmium telluride thin-film solar cells is improved even further by the addition of another material, selenium.

Read More: Selenium News and Selenium Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to