Nav: Home

Melanoma variability at the single-cell level predicts treatment responses

October 08, 2019

TAMPA, Fla. - Patients with advanced melanoma have been able to live longer because of several newly approved targeted treatment options, including BRAF and MEK inhibitors. However, patients will often have different responses to the same treatment due to genetic variability. Melanoma varies from patient to patient, but genetic variability is also prevalent among different cells from a single tumor. In a new study published in EBioMedicine, researchers with Moffitt Cancer Center's Donald A. Adam Melanoma and Skin Cancer Center of Excellence reveal that differences at the single-cell level can predict responses to initial BRAF inhibitor therapy, and that leveraging these differences may improve patient outcomes.

Approximately half of all melanoma patients have mutations in the BRAF gene that promote cancer growth. Drugs that target BRAF and the downstream signaling protein MEK have significantly improved patient outcomes, but patients with advanced melanoma are rarely cured with these drugs and most will eventually develop drug resistance and relapse. However, some patients with BRAF-mutated melanoma can be successfully retreated with BRAF or MEK inhibitors. Moffitt researchers wanted to determine how differences between cells of a single tumor lead to better responses to BRAF/MEK inhibitors in certain patients.

The research team assessed the variability of melanoma cells and their responses to BRAF inhibitor treatment by analyzing the RNA expression patterns in single cells from melanoma cell lines and patient samples. They discovered that melanoma cells can reside within four different states with distinct patterns of gene expression. Their analysis predicted the following:
  • State 1: Cells that divided more frequently and were more sensitive to BRAF inhibitors

  • State 2: Cells that were less proliferative with a higher level of MAPK signaling

  • State 3: Cells enriched for expression of the genes EGFR, c-JUN and Axl and were more resistant to BRAF inhibitors

  • State 4: Cells undergoing cell death
The researchers found that maintaining a population of cells within the drug sensitive State 1 was critical to maintaining drug sensitivity. Cell lines that lacked a population of cells within State 1 were more resistant to BRAF inhibitor treatment and could not be successfully rechallenged with a BRAF inhibitor.

These observations, along with evolutionary principles, were used to create a mathematical model to show that it is possible to maintain drug-sensitive cell populations in State 1 by using an adaptive dosing schedule. Normally, melanoma patients are treated with a continuous dosing schedule with the intent of killing many cancer cells as quickly as possible. This continuous dosing approach often leads to the development of drug resistant tumor cell populations. During an adaptive dosing schedule, the decision to hold or initiate drug treatment is based on predicted tumor growth and individual factors.

"Our goal was to achieve initial tumor shrinkage and then to maintain sensitive cells within the tumor, preventing the uncontrolled expansion of the more resistant cellular states," explained Inna Smalley, Ph.D., a member of Moffitt's Department of Tumor Biology.

The researchers validated their mathematical model in mouse experiments by showing that adaptive dosing schedules resulted in stronger anti-tumor responses compared to standard continuous dosing schedules. They hope that their studies in cell lines and mouse models will lead to improved treatment approaches for patients.

"Our findings further provide the proof-of-concept that resistance can be delayed through adaptive scheduling of existing FDA-approved drugs, with the advantages of reduced drug exposure and toxicity to the patient," said Smalley.
-end-
The research team will assess the feasibility of this adaptive treatment approach in a phase 1 clinical trial of BRAF-MEK inhibitors in advanced melanoma patients at Moffitt.

Their work was supported by funds from the National Institute of Health.

About Moffitt Cancer Center

Moffitt is dedicated to one lifesaving mission: to contribute to the prevention and cure of cancer. The Tampa-based facility is one of only 51 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt's scientific excellence, multidisciplinary research, and robust training and education. Moffitt is a Top 10 cancer hospital and has been nationally ranked by U.S. News & World Report since 1999. Moffitt's expert nursing staff is recognized by the American Nurses Credentialing Center with Magnet® status, its highest distinction. With more than 6,500 team members, Moffitt has an economic impact in the state of $2.4 billion. For more information, call 1-888-MOFFITT (1-888-663-3488), visit MOFFITT.org, and follow the momentum on Facebook, Twitter, Instagram and YouTube.

H. Lee Moffitt Cancer Center & Research Institute

Related Tumor Articles:

Glutamine-blocking drug slows tumor growth and strengthens anti-tumor response
A compound developed by Johns Hopkins researchers that blocks glutamine metabolism can slow tumor growth, alter the tumor microenvironment and promote the production of durable and highly active anti-tumor T cells.
Cancer genes and the tumor milieu
In a recent study published in Cancer Research, researchers demonstrate the role of an oncogene in altering the immediate environment of tumors.
Mechanism of tumor metastasis and tumor-suppressive role of UDP-glucose revealed
Scientists from Dalian Institute of Chemical Physics (DICP) and Shanghai Institute of Biochemistry and Cell Biology (SIBCB) of the Chinese Academy of Sciences revealed that UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis.
The fluid that feeds tumor cells
MIT biologists have found that the nutrient composition of the interstitial fluid that normally surrounds pancreatic tumors is different from that of the culture medium normally used to grow cancer cells.
Insight into tumor-suppressive and tumor-promoting effects of cellular senescence
Wistar researchers have described a novel role of nicotinamide adenine dinucleotide (NAD+) metabolism in the ability of senescent cells to release tumor-promoting molecules.
A tumor cell population responsible for resistance to therapy and tumor relapse
Researchers at the Université libre de Bruxelles (ULB) uncover a tumor cell population responsible for resistance to therapy and tumor relapse in the most frequent human cancer.
New perspective on tumor genome evolution
An interdisciplinary team of scientists at the Centre for Genomic Regulation in Barcelona, Spain, deepens understanding of tumor genome evolution and suggests negative selection acting on cancer-essential genes plays a more important role than previously anticipated.
Cancer: Tumor transition states
Researchers at the Université libre de Bruxelles define for the first time the tumor transition states occurring during cancer progression and identify the tumor cell populations responsible for metastasis.
Water dynamics indicate tumor status
How aggressive is a tumor? To measure the tumor status without taking tissue samples, Italian researchers have developed a method based on magnetic resonance imaging (MRI) of whole body parts.
Detailed images of tumor vasculature
Thanks to a new method of analyzing ultrasound images, conventional scanners can be used for generating high-res images of blood vessels in tumors.
More Tumor News and Tumor Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab