Nav: Home

Need to balance guides development of limb-body coordination

October 08, 2019

The need to feel balanced drives the development of coordination between body and limbs as zebrafish larvae learn to swim, a new study finds.

Published online October 8 in eLife, the study found that the developing fish rely on their vestibular organs - the equivalent of the human inner ear - as their sense of balance oversees improvements in coordination needed to remain horizontal. A level posture is preferred across evolution, say the study authors, as it helps animals to move, find food, and evade predators.

Led by researchers from NYU School of Medicine, the work focused on zebrafish larvae, which undergo their development while swimming in the water, venturing into their environment much earlier after fertilization (3-30 days) than a human fetus, which continues to develop in the womb. This external development enabled researchers to watch larvae for changes in movement patterns that depend on brain circuits similar to those that enable human balance.

"The relationship between balance and movement is broken in rare diseases like Developmental Coordination Disorder, and in ataxias, the movement problems that occur in patients with multiple sclerosis and in those who have had a stroke," says lead study investigator David Schoppik, PhD, assistant professor in the Department of Neuroscience and Physiology at NYU School of Medicine.

"Our hope is that the work in fish guides the future development of therapies for disorders caused by the brain's mishandling of balance cues as it coordinates muscle groups," says Schoppik.

Balance Basics

Past studies have argued that fins evolved into the forelimbs of land animals, and that zebrafish pectoral fins may provide a useful model for the role of forelimbs in coordinated movement. Maturing humans learn to swing their arms and flex trunk muscles as they walk, which reduces angular momentum (the tendency to pitch forward). However, the sensations that guide the development of this coordination are poorly understood.

One clue observed across evolution is that animals prefer to remain horizontal to satisfy a sense of balance and orientation to the world. On land, animals judge their orientation relative to gravity using many senses, including the feeling of how hard their feet are pressing on the ground, say the authors. The related biomechanics are more complex on land than underwater where, thanks to buoyancy, animals are more dependent on a single factor - their vestibular sense - to guide improvements in coordination, researchers say.

The new study found that zebrafish larvae used upward-orienting body rotations together with lift-producing pectoral fin motions to climb in water. Researchers also observed that fish larvae became better able with age to remain level as they climbed by matching larger fin actions with smaller body movements. Younger fish were more likely to careen upward nose-first like rockets.

The research team also found that zebrafish engineered to lack function in their utricular otoliths - the fish version of the balance system - did not get better with age at coordinating trunk and fin movements to achieve postural stability.

The study results also address the cerebellum, long established as a center for the coordination muscle movements (motor coordination). The new work showed that zebrafish with disabled cerebellar function, instead of using lift-generating pectoral fins only while climbing, also use them as they try to dive. Cerebellar Purkinje cells in particular blocked pro-movement signals to rule out pectoral fin movements when they would clash with body movements.

"Our work shows that the fish brain uses information about balance to generate the right combination of muscle contractions to effectively swim," says study co-author David Ehrlich, PhD, a post-doctoral scholar in Schoppik's lab. "Now that we know these fish are capable of elegant coordination, we can measure brain activity to understand how and where coordinated movements are composed."
The study was funded by National Institute on Deafness and Communications Disorders grant DC017489 and the Hearing Health Foundation.

NYU Langone Health / NYU School of Medicine

Related Zebrafish Articles:

Zebrafish study reveals developmental mechanisms of eye movement
Zebrafish research is a promising way to understand the neural and genetic causes of eye movement problems in people, according to multi-university research led by Albert Pan of the Fralin Biomedical Research Institute at VTC.
Special cells contribute to regenerate the heart in Zebrafish
It is already known that zebrafish can flexibly regenerate their hearts after injury.
Survival of the zebrafish: Mate, or flee?
*Researchers have found that when making decisions that are important to the species' survival, zebrafish choose to mate rather than to flee from a threat.
Zebrafish capture a 'window' on the cancer process
Cancer-related inflammation impacts significantly on cancer development and progression. New research has observed in zebrafish, for the first time, that inflammatory cells use weak spots or micro-perforations in the extracellular matrix barrier layer to access skin cancer cells.
How a zebrafish could help solve the mysteries of genetic brain disease
A close look at the rapidly developing zebrafish embryo is helping neuroscientists better understand the potential underpinnings of brain disorders, including autism and schizophrenia.
Zebrafish help unlock mystery of motor neurone disease
Scientists from the University of Sheffield have successfully created zebrafish that carry the complex genetic change known to cause the most common genetic form of motor neurone disease (MND).
Zebrafish larvae help in search for appetite suppressants
Researchers at the University of Zurich and Harvard University have developed a new strategy in the search for psychoactive drugs.
A free electronic management repository for zebrafish
Effective and efficient electronic systems for managing zebrafish colony operations are available but expensive.
Pairing zebrafish by personality improves fitness of the species
Scientists have challenged the theory of 'love at first sight' after discovering that they can boost the reproductive success of zebrafish by pairing them by personality, rather than appearance.
Why zebrafish (almost) always have stripes
A mathematical model helps explain the key role that one pigment cells plays in making sure that each stripe on a zebrafish ends up exactly where it belongs.
More Zebrafish News and Zebrafish Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab