The Marangoni Effect can be used to obtain freshwater from the sea

October 08, 2020

The Achilles' heel of water desalination technologies is the crystallization of salt particles within the various components of the device. This clogging phenomenon causes a reduction in performance over time, thus limiting the durability of these devices. Tackling this problem is important to ensure a constant production of freshwater over time. Recently, innovative nanostructured materials with anti-clogging properties have been proposed, with the potential of limiting salt accumulation. However, the high cost of these materials makes large-scale production of commercial prototypes difficult.

Starting from this problem, a team of engineers from the Energy Department of the Politecnico di Torino (SMaLL), in collaboration with the Massachusetts Institute of Technology (MIT), has thoroughly studied the mechanisms underlying the transport of salt particles in desalination devices. The study started after noting an inconsistency between experimental observations and classical theoretical models of salt transport. In particular, the engineers of the Politecnico di Torino, after more than two years of numerical and laboratory research funded by the Compagnia di San Paolo (MITOR project) and the CleanWaterCenter (CWC), have shown that this large difference in the salt transport is due to the so-called Marangoni effect. Based on this discovery, the researchers of the Politecnico di Torino (Matteo Morciano, Matteo Fasano, Eliodoro Chiavazzo and Pietro Asinari, who also holds the position of Scientific Director of the National Institute of Metrological Research - INRiM) and of MIT (Svetlana V. Boriskina) have created a prototype capable of desalting seawater in a sustainable way and spontaneously removing the salt accumulated during operation.

The Marangoni effect is a phenomenon also present in nature, which can be observed in everyday life: "In an aqueous solution, liquid molecules interact with each other through intermolecular bonds that generate forces called 'cohesion forces'. Two solutions with different concentrations will have different cohesion forces. The presence of this concentration variation, and therefore of cohesion forces, causes the liquid to flow away from regions of low concentration, generating a re-mixing process. This effect is responsible for the 'tears' of wine that are observed on the walls of the glass when shaken. The Marangoni effect, due to a change in concentration in the liquid, can therefore be engineered and exploited to increase the re-mixing of solutions with different concentrations. In our desalination device (where the treated solutions are based on sea water at different concentrations), this phenomenon allows to avoid the accumulation of salt in the evaporators, ensuring constant and lasting productivity of distilled water, and safeguarding the components subject to deterioration. Our strategy was therefore to design a device capable of taking full advantage of this effect, achieving a further step towards future commercial applications of the device", explains Matteo Morciano, researcher at the Energy Department of the Politecnico di Torino and first author of the research.

In the current version and considering an area for the absorption of solar energy of about one square meter, the desalination device can supply more than 15 litres of water per day. Furthermore, thanks to the Marangoni effect, the salt removal process is up to 100 times faster than predictions based on spontaneous diffusion, thus favouring a rapid restoration of the properties of the components.

The results of this research, published in the prestigious journal Energy and Environmental Science [*], may have important implications in the design of a new generation of desalination materials and devices, allowing them to spontaneously 'self-clean' the accumulated salt and guaranteeing stable and long-lasting performance. Further research is currently underway at the CleanWaterCenter of the Politecnico di Torino, with the aim of making the prototype industrializable and more versatile.
-end-


Politecnico di Torino

Related Salt Articles from Brightsurf:

A salt solution toward better bioelectronics
A water-stable dopant enhances and stabilizes the performance of electron-transporting organic electrochemical transistors.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

New technology helps reduce salt, keep flavor
A new processing technology out of Washington State University called microwave assisted thermal sterilization (MATS) could make it possible to reduce sodium while maintaining safety and tastiness.

The salt of the comet
Under the leadership of astrophysicist Kathrin Altwegg, Bernese researchers have found an explanation for why very little nitrogen could previously be accounted for in the nebulous covering of comets: the building block for life predominantly occurs in the form of ammonium salts, the occurrence of which could not previously be measured.

Salt helps proteins move on down the road
Rice chemists match models and experiments to see how salt modifies surface interactions in chromatography used to separate valuable drug proteins.

Mars once had salt lakes similar to Earth
Mars once had salt lakes that are similar to those on Earth and has gone through wet and dry periods, according to an international team of scientists that includes a Texas A&M University College of Geosciences researcher.

Marathoners, take your marks...and fluid and salt!
Legend states that after the Greek army defeated the invading Persian forces near the city of Marathon in 490 B.C.E., the courier Pheidippides ran to Athens to report the victory and then immediately dropped dead.

Water solutions without a grain of salt
Monash University researchers have developed technology that can deliver clean water to thousands of communities worldwide.

Solving the salt problem for seismic imaging
Automated imaging of underground salt bodies from seismic data could help streamline oil and gas exploration.

Higher salt intake can cause gastrointestinal bloating
A study led by researchers at the Johns Hopkins Bloomberg School of Public Health found that individuals reported more gastrointestinal bloating when they ate a diet high in salt.

Read More: Salt News and Salt Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.