Nav: Home

Setting a TRAP for pandemic-causing viruses

October 08, 2020

A research team led by Nagoya University scientists in Japan has developed an approach that can quickly find synthetic proteins that specifically bind to important targets, such as components of the SARS-CoV-2 virus. The method was published in the journal Science Advances and could be used to develop test kits or for finding treatments.

"We developed a laboratory technique for rapid selection of synthetic proteins that strongly bind to SARS-CoV-2," says Nagoya University biomolecular engineer Hiroshi Murakami. "High-affinity synthetic proteins can be used to develop sensitive antigen tests for SARS-CoV-2 and for future use as neutralization antibodies in infected patients."

Murakami and his colleagues had previously developed a protein selection lab test called TRAP display, which stands for 'transcription-translation coupled with association of puromycin linker.' Their approach skips two time-consuming steps in another commonly used technique for searching through synthetic protein libraries. But their investigations indicated there was a problem with the puromycin linker.

In the current study, the team improved their technique by modifying the puromycin linker. Ultimately, they were able to use their TRAP display to identify nine synthetic proteins that bind to the spike protein on SARS-CoV-2's outer membrane. The approach took only four days compared to the weeks it would take using the commonly used messenger RNA display technology.

TRAP display involves using a large number of DNA templates that code for and synthesize trillions of proteins carrying random peptide sequences. The synthetic proteins are linked to DNA with the help of the modified puromycin linker and then exposed to a target protein. When the whole sample is washed, only the synthetic proteins that bind to the target remain. These are then placed back into the TRAP display for further rounds until only a small number of very specific target-binding synthetic proteins are left.

The researchers investigated the nine synthetic proteins that were found to bind to SARS-CoV-2. Some were specifically able to detect SARS-CoV-2 in nasal swabs from COVID-19 patients, indicating they could be used in test kits. One also attaches to the virus to prevent it from binding to the receptors it uses to gain access to human cells. This suggests this protein could be used as a treatment strategy.

"Our high-speed, improved TRAP display could be useful for implementing rapid responses to subspecies of SARS-CoV-2 and to other potential new viruses causing future pandemics," says Murakami.
-end-
This study, "Antibody-like proteins that capture and neutralize SARS-CoV-2," was published online in Science Advances on September 18, 2020 at doi:10.1126/sciadv.abd3916.

About Nagoya University, Japan

Nagoya University has a history of about 150 years, with its roots in a temporary medical school and hospital established in 1871, and was formally instituted as the last Imperial University of Japan in 1939. Although modest in size compared to the largest universities in Japan, Nagoya University has been pursuing excellence since its founding. Six of the 18 Japanese Nobel Prize-winners since 2000 did all or part of their Nobel Prize-winning work at Nagoya University: four in Physics - Toshihide Maskawa and Makoto Kobayashi in 2008, and Isamu Akasaki and Hiroshi Amano in 2014; and two in Chemistry - Ryoji Noyori in 2001 and Osamu Shimomura in 2008. In mathematics, Shigefumi Mori did his Fields Medal-winning work at the University. A number of other important discoveries have also been made at the University, including the Okazaki DNA Fragments by Reiji and Tsuneko Okazaki in the 1960s; and depletion forces by Sho Asakura and Fumio Oosawa in 1954.

Website: http://en.nagoya-u.ac.jp/

Nagoya University

Related Dna Articles:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.
Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.
Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.
Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.
Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.
Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.