Mechanical forces of biofilms could play role in infections

October 08, 2020

The vast majority of bacteria in the world live on surfaces by forming structures called "biofilms". These communities host thousands to millions of bacteria of different types, and are so biologically complex and active that scientists describe them as "cities".

Biofilms are in fact the preferred lifestyle of bacteria. They form them by attaching to each other on surfaces as diverse as the ocean floor, internal organs and teeth: dental plaque is a common example of a biofilm. But biofilms also cause chronic infections, e.g. the opportunistic pathogen Pseudomonas aeruginosa that forms biofilms in the lungs of cystic fibrosis patients.

Generally speaking, the interaction between biofilm and host is thought to be biochemical. But there is some evidence to suggest that the physical, mechanical interplay between them might be just as important - and overlooked as an influence on the host's physiology. For example, how do biofilms form on soft, tissue-like materials?

This is the question that a team of scientists led by Alex Persat at EPFL have ventured to answer. Publishing in the journal eLife, they show that biofilms of two major pathogenic bacteria, Vibrio cholerae and Pseudomonas aeruginosa, can cause large structural deformations on soft materials like hydrogels.

When bacteria form biofilms, they attach onto a surface and begin to divide. At the same time, they bury themselves inside a mix of polysaccharides, proteins, nucleic acids, and debris from dead cells. This mix forms a sticky substance that is called the "EPS" matrix (EPS stands for "extracellular polymeric substances").

As single bacteria grow inside the EPS they stretch or compress it, exerting mechanical stress. The growth of the biofilm and the EPS matrix's elastic properties generate internal mechanical stress.

The scientists grew biofilms on soft hydrogel surfaces and measured how they exerted forces upon variations of EPS components. This revealed that biofilms induce deformations by "buckling" like a carpet or a ruler. How big the deformations are depends on how stiff the "host" material is and on the composition of the EPS.

The researchers also found that V. cholerae biofilms can generate enough mechanical stress to deform and damage soft epithelial cell monolayers, like those that line the surface of our lungs and intestines. What this means is that the forces generated by growing biofilms might mechanically compromise the physiology of their host. In short, biofilms could promote a "mechanical" mode of infection, which might warrant a whole new approach to treatments.
-end-
Professor Alexandre Persat's' lab is part of EPFL's Global Health Institute, situated in the School of Life Sciences.

Reference

Alice Cont, Tamara Rossy, Zainebe Al-Mayyah, Alexandre Persat. Biofilms deform soft surfaces and disrupt epithelia. eLife 07 October 2020. DOI: 10.1101/2020.01.29.923060

Ecole Polytechnique Fédérale de Lausanne

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.