Study describes COVID-19 transmission pattern

October 08, 2020

By José Tadeu Arantes | Agência FAPESP – The most widely used model to describe the epidemic evolution of a disease over time is called SIR, short for susceptible (S), infected (I), and removed (R). A susceptible person can be infected, and the infected person will eventually be removed owing to either immunization or death. The number of people in each class varies, whereas the total population, given by the sum of individuals in all three classes, is considered constant in the time scale of epidemic contamination.

The function I(t) resulting from the model describes the increase in the number of infected people over time. The curve rises sharply during the phase in which the pathogen is spreading quickly, peaking at maximum contamination, and sloping down more gently as contagion slowly decreases until there are no longer any infectious people. The SIR model has been applied in several studies of the COVID-19 pandemic.

“Although this model is a very useful tool to investigate the temporal evolution of the pandemic, it provides few insights into how contagion progresses spatially, which is key to the planning of social distancing programs that effectively protect people and at the same time reduce the socio-economic impact of the disease,” Airton Deppman, a professor in the University of São Paulo’s Physics Institute (IF-USP), told Agência FAPESP.

Deppman is one of the authors of a paper published in the journal Chaos, Solitons & Fractals reporting some of the findings.

The study was supported by FAPESP via a Thematic Project for which Arnaldo Gammal is principal investigator and Deppman is one of several co-principal investigators.

The results point to the fractal nature of transmission in the case of COVID-19, as is also the case for many other variables relating to social life. This means contagion occurs discontinuously but in accordance with the same pattern at different scales. An infected person initially transmits the virus to a relatively small group with which he or she is in direct contact. Then there is a gap in transmission, followed by another phase in which the initially infected group transmits the virus to a larger group, and so on.

“When you construct a graph crossing the number of infected people with the population and quantify the variables on a logarithmic scale on the x and y axes, the result is a straight line. This is typical of a fractal phenomenon, in which the same pattern is repeated at various scales,” Deppman explained.

The study investigated this spatial distribution using data for China, the United States, and the state of São Paulo and tested the results by comparing the data for São Paulo and Europe. “The model successfully described in great detail the temporal evolution of contagion,” Deppman said. “As a rule of thumb, the curve rises steeply at first, and this is followed by smaller peaks and troughs as the virus is transmitted from one area to the next.”

The model can be used to find an optimal point at which to begin and end isolation, which should happen region by region and not generically for an entire state or country, he concluded.

The article “Fractal signatures of the COVID-19 spread” can be read at: www.sciencedirect.com/science/article/pii/S0960077920305166?via%3Dihub#!.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Virus Articles from Brightsurf:

Researchers develop virus live stream to study virus infection
Researchers from the Hubrecht Institute and Utrecht University developed an advanced technique that makes it possible to monitor a virus infection live.

Will the COVID-19 virus become endemic?
A new article in the journal Science by Columbia Mailman School researchers Jeffrey Shaman and Marta Galanti explores the potential for the COVID-19 virus to become endemic, a regular feature producing recurring outbreaks in humans.

Smart virus
HSE University researchers have found microRNA molecules that are potentially capable of repressing the replication of human coronaviruses, including SARS-CoV-2.

COVID-19 - The virus and the vasculature
In severe cases of COVID-19, the infection can lead to obstruction of the blood vessels in the lung, heart and kidneys.

Lab-made virus mimics COVID-19 virus
Researchers at Washington University School of Medicine in St. Louis have created a virus in the lab that infects cells and interacts with antibodies just like the COVID-19 virus, but lacks the ability to cause severe disease.

Virus prevalence associated with habitat
Levels of virus infection in lobsters seem to be related to habitat and other species, new studies of Caribbean marine protected areas have shown.

Herpes virus decoded
The genome of the herpes simplex virus 1 was decoded using new methods.

A new biosensor for the COVID-19 virus
A team of researchers from Empa, ETH Zurich and Zurich University Hospital has succeeded in developing a novel sensor for detecting the new coronavirus.

How at risk are you of getting a virus on an airplane?
New 'CALM' model on passenger movement developed using Frontera supercomputer.

Virus multiplication in 3D
Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies.

Read More: Virus News and Virus Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.