Turning a hot spot into a cold spot: Fano-shaped local-field responses probed by a quantum dot

October 08, 2020

Optical nanoantennas can convert propagating light to local fields. The local-field responses can be engineered to exhibit nontrivial features in spatial, spectral and temporal domains. Local-field interferences play a key role in the engineering of the local-field responses. By controlling the local-field interferences, researchers have demonstrated local-field responses with various spatial distributions, spectral dispersions and temporal dynamics. Different degrees of freedom of the excitation light have been used to control the local-field interferences, such as the polarization, the beam shape and beam position, and the incidence direction. Despite the remarkable progress, achieving fully controllable local-field interferences remains a major challenge. A fully controllable local-field interference should be controllable between a constructive interference and a complete destructive interference. This would bring unprecedented benefit for the engineering of the local-field responses.

In a new paper published in Light Science & Application, a team of scientists from China, led by Professor Sailing He from Zhejiang University and Professor Jianwei Tang from Huazhong University of Science and Technology, have experimentally demonstrated that based on a fully controllable local-field interference designed in the nanogap of a nanoantenna, a local-field hot spot can be turned into a cold spot, and the spectral dispersion of the local-field response can exhibit dynamically tunable Fano lineshapes with nearly vanishing Fano dips. By simply controlling the excitation polarization, the Fano asymmetry parameter q can be tuned from negative to positive values, and correspondingly, the Fano dip can be tuned across a broad wavelength range. At the Fano dips, the local-field intensity is strongly suppressed by up to ~50-fold.

The nanoantenna is an asymmetric dimer of colloidal gold nanorods, with a nanogap between the nanorods. The local-field response in the nanogap has the following features: First, local field can be excited by both orthogonal polarizations; Second, the local-field polarization has a negligible dependence on the excitation polarization; Third, the local-field response is resonant for one excitation polarization, but nonresonant for the orthogonal excitation polarization. The first two features make the local-field interferences fully controllable. The third feature further enables Fano-shaped local-field responses.

For experimental study of the local-field responses, it is crucial to probe the local fields at specified spatial and spectral positions. The scientists use a single quantum dot as a tiny sensors to probe the local-field spectrum in the nanogap of the nanoantenna. When the quantum dot is placed in the local field, it is excited by the local field, and its photoluminescence intensity can reveal the local-field response through comparison with its photoluminescence intensity excited directly by the incident light.

Superb fabrication technique is needed to fabricate such a tiny nanoantenna and put the tiny quantum dot sensor into the nanogap. The scientists use the sharp tip of an atomic force microscope (AFM) to do this job, pushing nanoparticles together on a glass substrate.

The scientists summarized the relevance of their work:

"Turning a local-field hot spot into a cold spot significantly expands the dynamic range for local-field engineering. The demonstrated low-background and dynamically tuneable Fano-shaped local-field responses can contribute as design elements to the toolbox for spatial, spectral and temporal local-field engineering."

"More importantly, the low background and high tunability of the Fano lineshapes indicate that local-field interferences can be made fully controllable. Since the local-field interferences play a key role in the spatial, spectral and temporal engineering of the local-field responses, this encouraging conclusion may further inspire diverse designs of local-field responses with novel spatial distributions, spectral dispersions and temporal dynamics, which may find application in nanoscopy, spectroscopy, nano-optical quantum control and nanolithography."

Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, Chinese Academy

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.