Generating 'oohs' and 'aahs': Vocal Joystick uses voice to surf the Internet

October 09, 2007

A new tool lets people with disabilities control a computer cursor without lifting a finger. Early tests suggest that an experienced user of Vocal Joystick would have as much control as someone using a handheld device. The Internet offers wide appeal to people with disabilities. But many of those same people find it frustrating or impossible to use a handheld mouse. Software developed at the University of Washington provides an alternative using one of the oldest and most versatile modes of communication: the human voice.

"There are many people who have perfect use of their voice who don't have use of their hands and arms," said Jeffrey Bilmes, a UW associate professor of electrical engineering. "I think there are several reasons why Vocal Joystick might be a better approach, or at least a viable alternative, to brain-computer interfaces." The tool's latest developments will be presented this month in Tempe, Ariz. at the Assets Conference on Computers and Accessibility.

Vocal Joystick detects sounds 100 times a second and instantaneously turns that sound into movement on the screen. Different vowel sounds dictate the direction: "ah," "ee," "aw" and "oo" and other sounds move the cursor one of eight directions. Users can transition smoothly from one vowel to another, and louder sounds make the cursor move faster. The sounds "k" and "ch" simulate clicking and releasing the mouse buttons.

Versions of Vocal Joystick exist for browsing the Web, drawing on a screen, controlling a cursor and playing a video game. A version also exists for operating a robotic arm, and Bilmes believes the technology could be used to control an electronic wheelchair.

Existing substitutes for the handheld mouse include eye trackers, sip-and-puff devices, head-tracking systems and other tools. Each technology has drawbacks. Eye-tracking devices are expensive and require that the eye simultaneously take in information and control the cursor, which can cause confusion. Sip-and-puff joysticks held in the mouth must be spit out if the user wants to speak, and can be tiring. Head-tracking devices require neck movement and expensive hardware.

Vocal Joystick requires only a microphone, a computer with a standard sound card and a user who can produce vocal sounds.

"A lot of people ask: 'Why don't you just use speech recognition"'" Bilmes said. "It would be very slow to move a cursor using discrete commands like 'move right' or 'go faster.' The voice, however, is able to do continuous commands quickly and easily." Early tests suggest that an experienced user of Vocal Joystick would have as much control as someone using a handheld device.

In the laboratory, doctoral student Jonathan Malkin, who helped develop the tool, uses Vocal Joystick to play a game called Fish Tale. It takes two minutes to train the program for Malkin's voice. He then moves the fish character easily around the screen, raising his voice slightly to speed up and avoid being eaten by a predator fish.

The newest development, which will be presented at the October meeting in Tempe, uses Vocal Joystick to control a robotic arm. The pitch of the tone moves the arm up and down; other commands are unchanged. This is the first time that vocal commands have been used to control a three-dimensional object, Bilmes said.

One initial concern, he said, was whether people would feel self-conscious using the tool.

"But once you try it you immediately forget what you're saying," Bilmes said. "I usually go to the New York Times' Web site to test the system and then I get distracted and start reading the news. I forget that I'm using it."

To test the device, the group has been working with about eight spinal-cord injury patients at the UW Medical Center since March.

"It's a really exciting idea. I think it has tremendous potential," said Kurt Johnson, a professor of rehabilitation medicine who is helping with the tests.

Bilmes said he hopes people will become more adept at using the system over time. Future research will incorporate more advanced controls that use more aspects of the human voice, such as repeated vocalizations, vibrato, degree of nasality and trills.

"While people use their voices to communicate with just words and phrases," Bilmes said, "the human voice is an incredibly flexible instrument, and can do so much more."
-end-
For more information, contact Bilmes at bilmes@ee.washington.edu and Malkin at (206) 543-4868 or jonny@u.washington.edu.

Video demonstrations and publications are available on the group's Web site, http://ssli.ee.washington.edu/vj/.

University of Washington

Related Robotic Arm Articles from Brightsurf:

Research lowers errors for using brain signals to control a robot arm
Brain-computer interfaces have seen a large influx of research in an effort to allow precise and accurate control of physical systems.

Exercising one arm has twice the benefits
New research from Edith Cowan University (ECU) has revealed that training one arm can improve strength and decrease muscle loss in the other arm - without even moving it.

Mind-controlled arm prostheses that 'feel' are now a part of everyday life
For the first time, people with arm amputations can experience sensations of touch in a mind-controlled arm prosthesis that they use in everyday life.

The right thumb becomes the left arm
Researchers from Toyohashi University of Technology, University of Tokyo and Keio University have revealed that a re-association of the right thumb with the virtual left arm could be induced by visuo-motor synchronization.

The long arm of childhood conditions
Available research on the impact of a person's socioeconomic status during childhood suggests that the circumstances one grows up in matter a great deal for adult health.

New haptic arm places robotics within easy reach
Imagine being able to build and use a robotic device without the need for expensive, specialist kit or skills.

Artificial intelligence controls robotic arm to pack boxes and cut costs
Rutgers computer scientists used artificial intelligence to control a robotic arm that provides a more efficient way to pack boxes, saving businesses time and money.

Robot arm tastes with engineered bacteria
A robotic gripping arm that uses engineered bacteria to 'taste' for a specific chemical has been developed by engineers at UC Davis and Carnegie Mellon University.

First-ever successful mind-controlled robotic arm without brain implants
A team of researchers from Carnegie Mellon University has made a breakthrough in the field of noninvasive robotic device control.

Up in arms: Insect-inspired arm technology aims to improve drones
Insect-inspired arm technology from Purdue University aims to improve drones to handle larger payloads.

Read More: Robotic Arm News and Robotic Arm Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.