Spinning-disk microscope offers window into the center of a cell

October 09, 2013

A new method of imaging cells is allowing scientists to see tiny structures inside the 'control centre' of the cell for the first time.

The microscopic technique, developed by researchers at Queen Mary University of London, represents a major advance for cell biologists as it will allow them to investigate structures deep inside the cell, such as viruses, bacteria and parts of the nucleus in depth.

Recent advances in optical physics have made it possible to use fluorescent microscopy to study complex structures smaller than 200 nanometres (nm) - around 500 times smaller than the width of a human hair. These methodologies are called super-resolution microscopy.

The drawback of such techniques is that they can only produce very clear images of structures that are at the bottom of the cell. Since the nucleus - the cell's 'control centre' - is in the middle of the cell and bacterial and viral infections can happen anywhere in the cell, this technique has considerable limitations for biologists.

This study shows how these issues have been overcome with a newly developed imaging system, making it possible to image structures as small as 80nm or less anywhere in the cell. The Spinning Disk Statistical Imaging (SDSI) system was developed by Dr Neveen Hosny, a bioengineer working with Professor Martin Knight in the School of Engineering and Materials Science and Dr Ann Wheeler, Head of Imaging at Queen Mary's Blizard Institute.

Dr Ann Wheeler said: "The spinning disk microscope produces focused images at high speed because it has a disk with an array of tiny holes in it which remove the out of focus light. We have combined this microscope with new fluorescent probes, which switch between a bright and dark state rapidly. This system is now allowing us to see structures three times smaller than could usually be seen using standard light microscopes.

"We have been able to visualise chromatin, which is the protein structure that controls DNA expression and the nuclear envelope. We have also used the method to get images of focal adhesions - sub-cellular macromolecules which the cell uses to attach to its environment.

"Although it was previously possible to see these structures, our method provdes a greater degree of detail. It also allows us to look at protein complexes which are smaller than 200nm in the nucleus, which hasn't been done before."

The microscope is housed in its own room with a carefully controlled environment to miminise vibrations.

Professor Knight added: "Super resolution microscopy is a major step forward and we are looking forward to using this technology in a wide range of applications from stem cell behaviour to understanding arthritis or the development of nanomedicine."

Dr Wheeler has worked with colleagues across Queen Mary to make the technique cost-effective and easy to use for scientists who are not experts in optical physics.

Dr Wheeler added: "We will be continuing to develop the technology to improve the fluorescent probes used for this technique and also applying it to cellular processes such as invasion in cancer."

The development and an analysis of the SDSI system is published today (Wednesday 9 October) in the journal PLOS ONE.
-end-


Queen Mary University of London

Related Microscope Articles from Brightsurf:

Microscope lens inspired by lighthouse
Custom-fabricated lenses make it easy to attach high-tech microscopes directly to cell incubators.

Print your own laboratory-grade microscope for US$18
For the first time, labs around the world can 3D print their own precision microscopes, thanks to an open-source design created at Bath.

Novel high-speed microscope captures brain neuroactivities
A research team led by Dr. Kevin Tsia from the University of Hong Kong (HKU); and Professor Ji Na, from the University of California, Berkeley (UC Berkeley) has successfully recorded the millisecond electrical signals in the neurons of an alert mouse with their super high-speed microscope - two-photon fluorescence microscope.

Graphene forms under microscope's eye
Scientists record the formation of foamy laser-induced graphene made with a small laser mounted to a scanning electron microscope.

Hybrid microscope could bring digital biopsy to the clinic
By adding infrared capability to the ubiquitous, standard optical microscope, researchers at the University of Illinois at Urbana-Champaign hope to bring cancer diagnosis into the digital era.

An ultrafast microscope for the quantum world
Processes taking place inside tiny electronic components or in molecules can now be filmed at a resolution of a few hundred attoseconds and down to the individual atom.

SLAP microscope smashes speed records
A new 2-photon microscope captures videos of the brain faster than ever, revealing voltage changes and neurotransmitter release.

New 3D microscope visualises fast biological processes better than ever
Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg have combined their expertise to develop a new type of microscope.

Use a microscope as a shovel? UConn researchers dig it
Using a familiar tool in a way it was never intended to be used opens up a whole new method to explore materials, report UConn researchers.

New method gives microscope a boost in resolution
Scientists at the University of W├╝rzburg have been able to boost current super-resolution microscopy by a novel tweak.

Read More: Microscope News and Microscope Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.