Nav: Home

Aluminum on the way to titanium strength

October 09, 2018

NUST MISIS scientists have proposed a technology that can double the strength of composites obtained by 3D printing from aluminum powder, and advance the characteristics of these products to the quality of titanium alloys: titanium's strength is about six times higher than that of aluminum, but the density of titanium is 1.7 times higher.

The developed modifiers for 3D printing can be used in products for the aerospace industry.

The developed modifying-precursors, based on nitrides and aluminum oxides and obtained through combustion, have become the basis of the new composite. The research results have been published in the highly rated scientific journal Sustainable Materials and Technologies: https://www.sciencedirect.com/science/article/pii/S2214993718300708?via%3Dihub

Two decades ago, molding was considered the only cost-effective way to manufacture bulk products. Today, 3D printers for metal are a worthy competitor to metallurgical methods. 3D printers have a chance to replace traditional methods of metallurgical production in the future. Using additive technologies with 3D printing creates a whole array of advantages, from creating more difficult forms and designs to the technology's cheaper cost and theoretical edge.

Today, there are several technologies that are used for printing metal, the main ones being Selective Laser Melting (SLM) and Selective Laser Sintering (SLS). Both of them involve the gradual layering of metal powder «ink», layer by layer, to build a given volume figure. SLS or SLM are additive manufacturing technologies based on layer-by-layer sintering of powder materials using a powerful (up to 500 Watt) laser beam.

Titanium is the optimal metal for manufacturing products for the aerospace industry, however it cannot be used in 3D printing because of the fire and explosion hazards of powders. Aluminum is an alternative, as it is lightweight (density 2700 kg/m3) and moldable, having an elasticity modulus of ~70 MPa. This is one of the main requirements of the industry for a metal to be suitable for 3D printing; however aluminum alone is not strong or solid enough: the tensile strength even for the alloy Duralumin is 500 MPa, and its Brinell hardness HB sits at 20 kgf/mm2.

The solution on how to strengthen aluminum 3D printing was proposed by the research team led by Professor Alexander Gromov from the NUST MISIS Department for Non-Ferrous Metals and Gold.

«We have developed a technology to strengthen the aluminum-matrix composites obtained by 3D printing, and we have obtained innovative precursor-modifiers by burning aluminum powders. Combustion products - nitrides and aluminum oxides - are specifically prepared for sintering branched surfaces with transition nanolayers formed between the particles. It is the special properties and structure of the surface that allows the particles to be firmly attached to the aluminum matrix and, as a result, [doubles] the strength of the obtained composites», said Alexander Gromov, head of the research group.

Currently, the team of developers is testing the prototypes with the help of new technology.
-end-


National University of Science and Technology MISIS

Related Technology Articles:

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.
Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.
Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.
Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.
The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).
AI technology could help protect water supplies
Progress on new artificial intelligence (AI) technology could make monitoring at water treatment plants cheaper and easier and help safeguard public health.
Transformative technology
UC Davis neuroscientists have developed fluorescence sensors that are opening a new era for the optical recording of dopamine activity in the living brain.
Do the elderly want technology to help them take their medication?
Over 65s say they would find technology to help them take their medications helpful, but need the technology to be familiar, accessible and easy to use, according to research by Queen Mary University of London and University of Cambridge.
Technology detecting RNase activity
A KAIST research team of Professor Hyun Gyu Park at Department of Chemical and Biomolecular Engineering developed a new technology to detect the activity of RNase H, a RNA degrading enzyme.
Taking technology to the next level
Physicists from the ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) developed a new hybrid integrated platform, promising to be a more advanced alternative to conventional integrated circuits.
More Technology News and Technology Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.