The many structures of the light-active biomolecules

October 09, 2018

How the light-sensitive part of the biomolecule phytochrome changes from a light-adapted state to a dark-adapted state has been investigated by researchers at Ruhr-Universität Bochum and Philipps-Universität Marburg. So far, the structures of only a few light-sensitive biomolecules are known - and only for the final states in light and darkness, but not for the intermediate steps. Using various spectroscopic methods, the Bochum-Marburg team has now succeeded in gaining new insights into dynamic structural changes.

The group led by Professor Enrica Bordignon from Bochum and Professor Oliver Essen from Marburg describe the findings in the journal Structure, published online on 20 September 2018.

Investigating light-driven structural changes

"Light-sensitive biomolecules such as phytochromes from plants are interesting for various applications, for example in agriculture, where a change in phytochrome could optimise the growth habits of plants, or for optogenetic tools that make it possible to control the activity of genetically modified cells in the living body with light," says Enrica Bordignon, head of Bochum's EPR Spectroscopy Working Group. Insights into how the photoreceptors change their spatial structure when exposed to light could advance these applications. "So far, however, it has been a challenge to decipher these processes with atomic resolution," explains doctoral researcher Tufa Assafa.

Universal mechanism

The researchers analysed a phytochrome molecule from cyanobacteria using a special form of mass spectrometry and a spectroscopic method called electron spin resonance. In contrast to other methods, they were able to study the molecule in solution and track its structural changes without having to crystallise it. They observed several characteristic structural changes in the light-sensitive segment of the phytochrome and created a model that shows the light-triggered conversion steps. In addition, the team showed that, for different phytochromes, there is a universal mechanism for the transformation from the dark-adapted to the light-adapted state.
-end-


Ruhr-University Bochum

Related Light Articles from Brightsurf:

Light from rare earth: new opportunities for organic light-emitting diodes
Efficient and stable blue OLED is still a challenge due to the lack of emitter simultaneously with high efficiency and short excited-state lifetime.

Guiding light: Skoltech technology puts a light-painting drone at your fingertips
Skoltech researchers have designed and developed an interface that allows a user to direct a small drone to light-paint patterns or letters through hand gestures.

Painting with light: Novel nanopillars precisely control intensity of transmitted light
By shining white light on a glass slide stippled with millions of tiny titanium dioxide pillars, researchers at the National Institute of Standards and Technology (NIST) and their collaborators have reproduced with astonishing fidelity the luminous hues and subtle shadings of 'Girl With a Pearl Earring.'

Seeing the light: Researchers combine technologies for better light control
A new technology that can allow for better light control without requiring large, difficult-to-integrate materials and structures has been developed by Penn State researchers.

A different slant of light
Giant clams manipulate light to assist their symbiotic partner.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

Scientists use light to accelerate supercurrents, access forbidden light, quantum world
Iowa State's Jigang Wang continues to explore using light waves to accelerate supercurrents to access the unique and potentially useful properties of the quantum world.

The power of light
As COVID-19 continues to ravage global populations, the world is singularly focused on finding ways to battle the novel coronavirus.

Seeing the light: MSU research finds new way novae light up the sky
An international team of astronomers from 40 institutes across 17 countries found that shocks cause most the brightness in novae.

Seeing the light: Astronomers find new way novae light up the sky
An international team of researchers, in a paper published today in Nature Astronomy, highlights a new way novae light up the sky: this is shocks from explosions that create the novae that cause most of the their brightness.

Read More: Light News and Light Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.