Memory 'brainwaves' look the same in sleep and wakefulness

October 09, 2018

Identical brain mechanisms are responsible for triggering memory in both sleep and wakefulness, new research at the University of Birmingham has shown.

The study sheds new light on the processes used by the brain to 'reactivate' memories during sleep, consolidating them so they can be retrieved later.

Although the importance of sleep in stabilising memories is a well-established concept, the neural mechanisms underlying this are still poorly understood.

In this study, published in Cell Reports, scientists have been able to show for the first time in humans that distinctive neural patterns in the brain which are triggered when remembering specific memories while awake, reappear during subsequent sleep.

The findings provide further evidence of the beneficial effects of sleep on memory formation.

Gaining a more sophisticated understanding of these mechanisms also enhances our understanding of how memories are formed. This could ultimately help scientists unravel the foundations of memory disorders such as Alzheimer's and lead to the development of memory boosting interventions.

Working in partnership with researchers at the Donders Institute, in Holland, the team used a technique called Targeted Memory Reactivation, which is known to enhance memory. In the experiment, previously learned information - in this case foreign vocabulary - is played back to a person while asleep.

Using electroencephalography, the brain signals of the study participants were recorded while learning and remembering the foreign vocabulary before sleep.

Subsequently, the researchers recorded the distinct neural pathways activated as the sleeping volunteers' brains reacted to hearing the words they had learned.

Comparing neural signals fired by the brain in each state, the researchers were able to show clear similarities in brain activity.

Dr Thomas Schreiner, of the University of Birmingham's School of Psychology, who led the research, says: "Although sleep and wakefulness might seem to have little in common, this study shows that brain activity in each of these states might be more similar than we previously thought. The neural activity we recorded provides further evidence for how important sleep is to memory and, ultimately, for our well-being."

"If we can better understand how memory really works, this could lead to new approaches for the treatment of memory disorders, such as Alzheimer's disease."

Dr Tobias Staudigl, of the Donders Institute, is co-lead author of the study. He said: "Understanding how memories are reactivated in different states also provides insight into how these memories could be altered - which might for example be interesting in therapeutic settings."

The team are planning a follow-on study, devising ways to investigate spontaneous memory activation during sleep. Using advanced machine learning techniques, the researchers can record and interpret neural patterns in the brain, identifying where memories are activated without the need for an external prompt.
-end-
The study was funded by the Swiss National Science Foundation and the European Research Council.

For more information please contact Communications Team, University of Birmingham. Tel: (0)121 414 2772; mobile: 0778 9921165; email: pressoffice@contacts.bham.ac.uk

Notes for editors

Schreiner et al (2018). 'Theta phase coordinated memory reactivation reoccurs in a slow-oscillatory rhythm during NREM sleep', Cell Reports

The University of Birmingham is ranked amongst the world's top 100 institutions. Its work brings people from across the world to Birmingham, including researchers, teachers and more than 6,500 international students from over 150 countries.

University of Birmingham

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.