Precise electron spin control yields faster memory storage

October 09, 2018

Data storage devices are not improving as fast as scientists would like. Faster and more compact memory storage devices will become a reality when physicists gain precise control of the spins of electrons. They typically rely on ultra-short lasers to control spins. However, improvement of storage devices via spin control requires first to develop ways of controlling the forces acting on these electronic spins. In a recent study published in EPJ B, John Kay Dewhurst and colleagues, have developed a new theory to predict the complex dynamics of spin procession once a material is subjected to ultra-short laser pulses. The advantage of this approach, which takes into account the effect of internal spin rotation forces, is that it is predictive.

In this study, the authors study the effect of firing an ultra-short laser pulse--below 100 femtoseconds-- on the internal electron spin rotation in bulk cobalt, nickel and combinations of these metals with platinum. These metals are typically used in spintronics devices--electronic devices which exploit the extra degree of freedom of electron spins. Unlike previous studies where the magnetic moment was forced to be aligned with the internal fields that generate it, in this study the authors use a fully non-aligned approach to create a theoretical description. As a result, spin rotation's contributions to the spin dynamics are taken into account. This makes the method applicable to a far broader set of magnetic materials than previous methods.

The authors find that internal spin rotation forces only contribute significantly to spin dynamics when the variation in different directions of the magnetic energy--or magnetic anisotropy energy--is small. This is the case with materials which are highly symmetric such as bulk metals with a cubic structure. When such magnetic anisotropy energy is large, the spin rotation effect is too small to cause any significant precession of spins below 100 femtoseconds. Further, the spin-dynamics caused by the internal spin-rotation is slow compared to other spin phenomenon, such as the inter site spin transfer between electrons and the spin-flips, mediated by spin-orbit.
-end-
References: J. K. Dewhurst, A. Sanna, S. Sharma (2018), Effect of exchange-correlation spin-torque on spin dynamics, Eur. Phys. Jour. B 91:218, DOI: 10.1140/epjb/e2018-90146-1

Springer

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.