Nav: Home

Abrikosov vortices help scientists explain inconsistencies in 'dirty' superconductors theory

October 09, 2018

International team of physicists explained anomalous low temperature behavior of 'dirty' superconductors. These materials possess various non-trivial properties which make them necessary for quantum computers with superconductive qubits. In a paper published in Nature Physics, scientists report how 'dirty' superconductors can violate the conventional theory of superconductivity. These results make it possible to engineer superconductive qubits that are perfectly isolated from the outer disturbances and thus can be fully used for quantum computing.

Superconductors are materials that lose electrical resistance under special circumstances. When resistance falls to zero, an electrical current circulates within a superconductor without any dissipation of energy, while in wires made of conventional materials a lot of energy is lost as heat. Although superconductivity has been discovered in early XX century, the first theory explaining superconductive properties was proposed only in 1950 by Soviet physicists Lev Landau and Vitaly Ginzburg. The complete microscopic theory of superconductivity was created seven years later by John Bardeen, Leon Cooper and John Schrieffer in the USA. This theory was dubbed BCS after their initials as they were awarded Nobel Prize for it in 1972.

Among other things BCS theory predicts the behavior of superconductors in a magnetic field. In a weak applied field superconductor expels magnetic flux while staying superconductive. This is called the Meissner effect. Yet large class of materials (known as 'type-II' superconductors), enable penetration of magnetic field at higher magnitudes into the bulk of superconductor in the form of quantized 'tubes' of magnetic flux. They are called Abrikosov vortices.

Such a 'mixed state' is superconducting if vortices are pinned to the underlying atomic structure by disorder, which creates potential energy wells where vortices prefer to sit. But if magnetic field is increased further, at the point called upper critical magnetic field (Bc2) the sample loses its superconductivity and behaves like normal metal. When the temperature of the sample is relatively high and gets closer to critical temperature (Tc), superconductivity can be destroyed even by weak magnetic field. In different materials critical temperature varies from several to several dozen kelvins. The lower the temperature, the stronger magnetic field must be applied to 'shut down' the superconductivity. However, at a range of very low temperatures the magnetic field required to destroy superconductivity is stable and does not depend on the temperature of superconductive sample.

"This classical behavior is violated in 'very dirty' superconductors", says Mikhail Feigelman, head of the Quantum Mesoscopics Department of Landau Institute for Theoretical Physics. "By 'very dirty' we mean superconductors made of some metal alloys with highly disordered crystal structure: they are almost amorphous. In these superconductors critical magnetic field continues to increase almost linearly even at very low temperatures. This abnormal behavior has been observed previously, but there was no decent explanation for it".

The new research contains several experiments and theoretical explanation of the unusual behaviour of 'very dirty' superconductors. Key experimental findings were made while measuring critical current density. Along with critical temperature and critical magnetic field, critical current density is a fundamental characteristic of a superconductor. It is the maximum electrical transport current density that the superconductor is able to maintain with zero resistance. When the critical current density is exceeded, the sample ceases to superconduct and starts to heat.

Authors of the new paper worked with amorphous indium oxide films of various levels of disorder - a prototypical disordered superconductor. They applied different currents to samples and measured critical magnetic fields required to destroy the superconductive state. Though similar experiments have been performed earlier, this research is the first to feature systematic measurements of the critical magnetic fields and currents in the 'very dirty' superconductor at near critical magnetic fields and near-zero temperatures. In addition to that, authors also measured the temperature dependence of the critical magnetic field value for indium oxide films.

"Surprisingly, it turned out that critical current density depends in a very simple way on how close the magnetic field is to its critical value. It is a power-law dependence and the exponent is 3/2. Comparing findings made in these two experiments, we managed to understand the connection between them. When strong magnetic field is applied to 'very dirty' superconductors and they still stay superconductive, thermal fluctuations of Abrikosov vortices occur inside disordered superconductor samples. And we found a way to describe these Abrikosov vortices thermal fluctuations. Our predictions turned out to be in good agreement with experimental data", explains Feigelman.

'Very dirty' superconductors are the cutting edge of modern superconductive physics. They differ from conventional metals in many ways. Under normal conditions, any disorder introduced in a usual metal decreases its ability to conduct electrical current. The greater the disorder, the greater is the electrical resistance. When cooled, resistance of such disordered conventional metals decreases. 'Very dirty' superconductors at room temperature behave as weak dielectrics and become less and less conductive with temperature decrease. But when critical temperature is reached, they leap into superconductive state.

"Superconducting and dielectric states are directly opposed to each other. This is why such a transition is amazing. 'Very dirty' superconductors have been studied for 25 years, but we still lack a complete theory to explain their unconventional behavior", notes Feigelman.

In recent years disordered superconductors have been extensively studied as it turned out that these materials have a lot of practical applications. 'Very dirty' superconductors are the best materials to isolate superconductive qubits - basic units of the quantum computer - from the external disturbances. That is due to their strong inductance - sort of electrical 'inertia' that determines the intensity of magnetic flux created by the electric current circulating inside the material. The more disordered the superconductor, the stronger it's inductivity is, and components with strong inductance serve as perfect 'noise insulators' that protect fragile quantum entanglement of the qubits.
Reference: Low-temperature anomaly in disordered superconductors near Bc2 as a vortex-glass property. Benjamin Sacépé et al. Nature Physics (2018)

AKSON Russian Science Communication Association

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".