Nav: Home

Abrikosov vortices help scientists explain inconsistencies in 'dirty' superconductors theory

October 09, 2018

International team of physicists explained anomalous low temperature behavior of 'dirty' superconductors. These materials possess various non-trivial properties which make them necessary for quantum computers with superconductive qubits. In a paper published in Nature Physics, scientists report how 'dirty' superconductors can violate the conventional theory of superconductivity. These results make it possible to engineer superconductive qubits that are perfectly isolated from the outer disturbances and thus can be fully used for quantum computing.

Superconductors are materials that lose electrical resistance under special circumstances. When resistance falls to zero, an electrical current circulates within a superconductor without any dissipation of energy, while in wires made of conventional materials a lot of energy is lost as heat. Although superconductivity has been discovered in early XX century, the first theory explaining superconductive properties was proposed only in 1950 by Soviet physicists Lev Landau and Vitaly Ginzburg. The complete microscopic theory of superconductivity was created seven years later by John Bardeen, Leon Cooper and John Schrieffer in the USA. This theory was dubbed BCS after their initials as they were awarded Nobel Prize for it in 1972.

Among other things BCS theory predicts the behavior of superconductors in a magnetic field. In a weak applied field superconductor expels magnetic flux while staying superconductive. This is called the Meissner effect. Yet large class of materials (known as 'type-II' superconductors), enable penetration of magnetic field at higher magnitudes into the bulk of superconductor in the form of quantized 'tubes' of magnetic flux. They are called Abrikosov vortices.

Such a 'mixed state' is superconducting if vortices are pinned to the underlying atomic structure by disorder, which creates potential energy wells where vortices prefer to sit. But if magnetic field is increased further, at the point called upper critical magnetic field (Bc2) the sample loses its superconductivity and behaves like normal metal. When the temperature of the sample is relatively high and gets closer to critical temperature (Tc), superconductivity can be destroyed even by weak magnetic field. In different materials critical temperature varies from several to several dozen kelvins. The lower the temperature, the stronger magnetic field must be applied to 'shut down' the superconductivity. However, at a range of very low temperatures the magnetic field required to destroy superconductivity is stable and does not depend on the temperature of superconductive sample.

"This classical behavior is violated in 'very dirty' superconductors", says Mikhail Feigelman, head of the Quantum Mesoscopics Department of Landau Institute for Theoretical Physics. "By 'very dirty' we mean superconductors made of some metal alloys with highly disordered crystal structure: they are almost amorphous. In these superconductors critical magnetic field continues to increase almost linearly even at very low temperatures. This abnormal behavior has been observed previously, but there was no decent explanation for it".

The new research contains several experiments and theoretical explanation of the unusual behaviour of 'very dirty' superconductors. Key experimental findings were made while measuring critical current density. Along with critical temperature and critical magnetic field, critical current density is a fundamental characteristic of a superconductor. It is the maximum electrical transport current density that the superconductor is able to maintain with zero resistance. When the critical current density is exceeded, the sample ceases to superconduct and starts to heat.

Authors of the new paper worked with amorphous indium oxide films of various levels of disorder - a prototypical disordered superconductor. They applied different currents to samples and measured critical magnetic fields required to destroy the superconductive state. Though similar experiments have been performed earlier, this research is the first to feature systematic measurements of the critical magnetic fields and currents in the 'very dirty' superconductor at near critical magnetic fields and near-zero temperatures. In addition to that, authors also measured the temperature dependence of the critical magnetic field value for indium oxide films.

"Surprisingly, it turned out that critical current density depends in a very simple way on how close the magnetic field is to its critical value. It is a power-law dependence and the exponent is 3/2. Comparing findings made in these two experiments, we managed to understand the connection between them. When strong magnetic field is applied to 'very dirty' superconductors and they still stay superconductive, thermal fluctuations of Abrikosov vortices occur inside disordered superconductor samples. And we found a way to describe these Abrikosov vortices thermal fluctuations. Our predictions turned out to be in good agreement with experimental data", explains Feigelman.

'Very dirty' superconductors are the cutting edge of modern superconductive physics. They differ from conventional metals in many ways. Under normal conditions, any disorder introduced in a usual metal decreases its ability to conduct electrical current. The greater the disorder, the greater is the electrical resistance. When cooled, resistance of such disordered conventional metals decreases. 'Very dirty' superconductors at room temperature behave as weak dielectrics and become less and less conductive with temperature decrease. But when critical temperature is reached, they leap into superconductive state.

"Superconducting and dielectric states are directly opposed to each other. This is why such a transition is amazing. 'Very dirty' superconductors have been studied for 25 years, but we still lack a complete theory to explain their unconventional behavior", notes Feigelman.

In recent years disordered superconductors have been extensively studied as it turned out that these materials have a lot of practical applications. 'Very dirty' superconductors are the best materials to isolate superconductive qubits - basic units of the quantum computer - from the external disturbances. That is due to their strong inductance - sort of electrical 'inertia' that determines the intensity of magnetic flux created by the electric current circulating inside the material. The more disordered the superconductor, the stronger it's inductivity is, and components with strong inductance serve as perfect 'noise insulators' that protect fragile quantum entanglement of the qubits.
Reference: Low-temperature anomaly in disordered superconductors near Bc2 as a vortex-glass property. Benjamin Sacépé et al. Nature Physics (2018)

AKSON Russian Science Communication Association

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
More Magnetic Field News and Magnetic Field Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...