Ultrafast optical fiber-based electron gun to reveal atomic motions

October 09, 2018

WASHINGTON, D.C., October 9, 2018 -- One of the most enduring "Holy Grail" experiments in science has been attempts to directly observe atomic motions during structural changes. This prospect underpins the entire field of chemistry because a chemical process occurs during a transition state -- the point of no return separating the reactant configuration from the product configuration.

What does that transition state look like and, given the enormous number of different possible nuclear configurations, how does a system even find a way to make it happen?

Now in the journal Applied Physics Letters, from AIP Publishing, researchers at the Max Planck Institute for the Structure and Dynamics of Matter are reporting "ultrabright" electron sources with sufficient brightness to literally light up atomic motions in real time -- at a time scale of 100 femtoseconds, making these sources particularly relevant to chemistry because atomic motions occur in that window of time.

After seeing the first atomic movies of phase transitions in bulk thin films using high-energy (100 kilovolt) electron bunches, the researchers wondered if they could achieve atomic resolution of surface reactions -- occurring within the first few monolayers of materials -- to gain a better understanding of surface catalysis.

So they devised a low-energy (1-2 kilovolt) time-resolved electron diffraction concept of using fiber optics for miniaturization and the ability to stretch the electron pulse, then apply streak camera technology to potentially obtain subpicosecond temporal resolution -- a difficult feat within the low-electron energy regime.

"The first atomic movies use a stroboscopic approach akin to an old 8-millimeter camera, frame by frame, in which a laser excitation pulse triggers the structure, then an electron pulse is used to light up the atomic positions," said co-author Dwayne Miller. "We believed that a streak camera could get a whole movie in one shot within the window defined by the deliberately stretched electron pulse. It solves the problem of low electron numbers and greatly improves image quality."

Of the myriad possible nuclear configurations, the group discovered that the system collapses to just a few key modes that direct chemistry and that a reduction in dimensionality that occurs in the transition state or barrier-crossing region can be inferred. "We see it directly with the first atomic movies of ring closing, electron transfer and bond breaking," said Miller.
-end-
The article "Optical fiber driven low energy electron gun for ultrafast streak detection," is authored by Chiwon Lee, Gunther H. Kassier and R.J. Dwayne Miller. It appears in the journal Applied Physics Letters (DOI: 10.1063/1.5039737) and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5039737.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org.

By AIP News Staff

American Institute of Physics

Related Chemistry Articles from Brightsurf:

Searching for the chemistry of life
In the search for the chemical origins of life, researchers have found a possible alternative path for the emergence of the characteristic DNA pattern: According to the experiments, the characteristic DNA base pairs can form by dry heating, without water or other solvents.

Sustainable chemistry at the quantum level
University of Pittsburgh Associate Professor John A. Keith is using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are ''too slow'' or ''too expensive'', far more thoroughly and quickly than was considered possible a few years ago.

Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.

Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.

Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.

Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.

Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.

Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.

Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.

The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?

Read More: Chemistry News and Chemistry Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.